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Abstract—Simple functions of radar backscatter coefficients
have been proposed as indices of soil moisture and vegetation,
such as the radar vegetation index, i.e., RVI, and the soil sat-
uration index, i.e., m . These indices are ratios of noisy and
potentially miscalibrated radar measurements and are therefore
particularly susceptible to estimation errors. In this study, we
consider uncertainty in satellite estimates of RVI and m  arising
from two radar error sources: noise and miscalibration. We derive
expressions for the variance and bias in estimates of RVI and
ms due to noise. We also derive expressions for the sensitivity of
RVI and m; to calibration errors. We use one year (September 1,
2011 to August 31, 2012) of Aquarius scatterometer observations
at three polarizations (cyu, ovv, and ogv) to map predicted
error estimates globally, using parameters relevant to the National
Aeronautics and Space Administration Soil Moisture Active and
Passive satellite mission. We find that RVI is particularly vulner-
able to errors in the calibration offset term over lightly vegetated
regions, resulting in overestimates of RVI in some arid regions.
m is most sensitive to calibration errors over regions where the
dynamic range of the backscatter coefficient is small, including
deserts and forests. Noise induces biases in both indices, but they
are negligible in both cases; however, it also induces variance,
which is large for highly vegetated regions (for RVI) and areas with
low dynamic range in backscatter values (for m ). We find that,
with appropriate temporal and spatial averaging, noise errors in
both indices can be reduced to acceptable levels. Areas sensitive to
calibration errors will require masking.

Index Terms—Aquarius/SAC-D, microwave remote sensing,
radar vegetation index (RVI), scatterometer, Soil Moisture Active
Passive (SMAP), soil moisture, soil saturation index, uncertainty
analysis.

I. INTRODUCTION

IMPLE functions of radar backscatter coefficients have
been proposed as indices of soil moisture and vegetation.
Compared to retrievals of biomass and soil moisture obtained
from inverting electromagnetic scattering models, these indices
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are simple to apply, do not require ancillary data, and possess
vastly fewer tuning parameters, if any. Two such indices are
applicable to the Soil Moisture Active and Passive (SMAP)
mission [1]. Planned for launch in September 2014, SMAP
will provide global mapping of radar backscatter and brightness
temperature at L-band. The radar vegetation index (RVI) [2]
has been proposed for use in estimating vegetation properties
relevant to radar-only soil moisture retrieval algorithms. The
soil saturation index, i.e., ms, of Wagner et al. [3] is an optional
radar-only soil moisture algorithm [4]. While neither index is
part of the SMAP baseline algorithm suite, they are important
research products that can be generated by the SMAP mission
instrument measurements of backscatter cross section.

Both the RVI and m are ratios of noisy radar measure-
ments and are therefore particularly susceptible to estimation
errors. Furthermore, they are also susceptible to biases due
to imperfect calibration of the radar backscatter coefficients
and index-specific parameters. Understanding the sensitivity
and robustness of soil moisture and vegetation indices to these
errors is essential prior to their use by satellite missions such
as SMAP. However, few studies have quantified their impacts.
Error analysis of my is considered in [S] and [6]. A first-order
error propagation equation is used to estimate the variance of
ms. However, they do not consider the impact of noise on biases
in mg. No uncertainty analysis studies exist for RVI.

In this paper, we consider uncertainty in satellite estimates
of RVI and m arising from two radar error sources: noise and
miscalibration. We consider these error sources independently.
In Section II, we describe the Aquarius data set used in this
study, define and review RVI and mg, and introduce our un-
certainty analysis methodology. In Section III, we present the
results of the analysis. In the final section, we describe the main
findings of this paper and consider their implications for the
upcoming SMAP mission.

II. DATA AND METHODS

Here, we describe the Aquarius data set used to estimate
index uncertainty globally. We describe the radar vegetation and
soil moisture indices considered in this study. Finally, we derive
metrics for estimating variance and bias in each index due to
radar noise and for estimating the sensitivity of each metric to
calibration errors.

A. Global Aquarius Data

The NASA/SAC-D Aquarius mission provides global ob-
servations of sea surface salinity using collocated active and

0196-2892 © 2013 IEEE


mailto: kmccoll@mit.edu

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

passive L-band observations. Launched in June 2011, it crosses
the equator twice per day, at 6 A.M. (descending) and 6 P.M.
(ascending), with a repeat time of seven days. Its payload
includes a 1.26-GHz scatterometer, with three beams arranged
in a pushbroom configuration at incidence angles of 28.7°
(inner beam), 37.8° (middle beam), and 45.6° (outer beam). The
scatterometer’s individual footprints are ellipses with principal
axis dimensions slightly smaller than those of the collocated
radiometer (76 x 94, 84 x 120, and 96 x 156 km, respectively).
The overall swath width is 390 km [7].

In this study, we use one year (September 1, 2011 to
August 31, 2012) of version 2.0 Aquarius observations of
normalized radar backscatter cross section at three polariza-
tions (oumn, ovyv, and opy). Since the Aquarius data are still
undergoing calibration and the final calibrated data may be dif-
ferent to those currently available, in this study, we specifically
and additionally analyze the impact of calibration offsets (see
Section II-D2). Only observations from the middle beam
(37.8°) are used since this is closest to the fixed SMAP
incidence angle (40°). Quality flags supplied with the data
have been used to screen out Aquarius maneuvers and regions
contaminated by RFI. Furthermore, observations either fully
or partially overlapping ocean or water bodies were removed.
Observations over Antarctica and Greenland were also removed
since regions dominated by snowcover are not relevant for
this study. To preserve the instrument’s spatial resolution, we
gridded the data at the footprint scale. However, since Aquarius
footprints do not exactly overlap on repeat, a modified sampling
approach was required (see Fig. 1 for a schematic). The first
seven days of footprints were used to define a grid (the red
circle in Fig. 1). All subsequent observations with centers less
than 0.05° from a grid center are included in that cell (e.g.,
black circle in Fig. 1). Otherwise, they are excluded (e.g., black
dashed circle in Fig. 1). Note that this scheme results in some
footprints being included in multiple grid cells, whereas others
are not included in any cells. Our choice of a gridding threshold
(0.05°) results in > 95% of the Aquarius data being used.

B. RVI

The RVI is a measure of volume scattering typically caused
by structural elements of vegetation canopies (e.g., branches),
which is first defined in [8]. It is given by

8
RVI = onv . (1)
OHH + ovv + 20nv

All backscatter coefficients in this study are in linear units,
unless otherwise specified. RVI varies between 0 and 1, in-
creasing with vegetation cover. It can theoretically be shown to
be a measure of volume scattering from a cloud of randomly
oriented thin cylinders [2]; this is a common representation
used for vegetation canopies in more complex radar retrieval
algorithms (e.g., [9] and [10]). As such, RVI is simple yet
grounded in scattering theory and is a promising metric for
measuring vegetation cover. In particular, it is a measure of
vegetation structure that is independent of vegetation greenness,
a property measured by other indices such as the normalized
difference vegetation index. RVI has been used in a wide
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Fig. 1. Schematic of the sampling method used to grid Aquarius data.
Footprints with centers less than a threshold (0.05° in this study) from the grid
cell’s center are included in the grid cell (red). Here, d2 < 0.05°; thus, the
corresponding footprint is included in the grid cell (solid black); 1 > 0.05°;
thus, the corresponding footprint is excluded (dashed black).

range of applications, including classifying regions suscep-
tible to landslides [11] and tracking lava flows [12]. It has
been proposed for use in more complex radar soil moisture
retrieval algorithms by classifying vegetation cover in a region
as low, medium, or high [13], [14]. This allows less general
and less computationally intensive retrieval algorithms to be
subsequently deployed. A further advantage for SMAP is that
RVIis based on radar observations; thus, RVI estimates are tem-
porally and spatially collocated with radar-derived soil moisture
estimate. This avoids representativeness errors incurred from
using ancillary data from other observing systems.

C. Soil Saturation Index m

Wagner et al. [3] used a change-detection approach to esti-
mate soil moisture using radar observations. They introduced
an index my for estimating the degree of soil saturation in a
thin layer of surface soil, which is defined as

0% 9B(40,1) — 05 P (40,1)

v (40, 1) — 05 (40, 1)

wet

ms(t) =

where o 4B(40, ) is the backscatter coefficient (in decibels)

at a 40° incidence angle at time t; and ag’r;B(él(),t) and

\?V’C? B (40, t) are the values observed when the soil is totally dry

and fully saturated, respectively. We use the superscript “dB”
to emphasize the different units compared with those used in
RVI. An exponential filter can be applied to m, to estimate
the profile soil moisture, such as that used in the soil water
index [15]. Comparisons of m, with an soil moisture and ocean
salinity-derived soil saturation index yielded broadly consistent
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results [16]. The original formulation uses observations from
the European Remote Sensing satellite scatterometer, taken
over a range of incidence and azimuth angles, requiring further
processing to normalize the observations to the same 40° inci-
dence angle using time series of backscatter coefficients. Since
we use Aquarius observations taken at a single incidence angle,
we do not consider these corrections. Furthermore, real-time
soil moisture observations considered in [3] require estimates of
o2 48(40,t) and og’ryd (40, t) to vary with time, to account for
the effects of seasonally varying vegetation. Since these vari-
ations are typically small and we only consider soil moisture
climatology, we do not apply these corrections. Assuming that
over a sufficiently long time series both fully dry and saturated
conditions will occur, Jg’r;i B and a%e? B can be estimated by
the minimum and maximum observed backscatter coefficients,

respectively. The resulting formulation used in this study is

1 min, dB
m (O’ ) o 10 OglO(UVV) —Oyv (2)
s\OVV) = max, dB min, dB
vV AR

where we have altered the expression to be a function of
ovyv in linear units. We drop the angle and time dependence
terms for brevity. While opp is known to be more sensitive
to soil moisture, we define mg as a function of oyvy to be
consistent with previous studies, which only had access to
vertically copolarized backscatter coefficients (e.g., [5]). ms
varies between 0 and 1. The volumetric soil moisture can be ob-
tained by multiplying m by the soil porosity. In this study, we
calculate the maximum and minimum backscatter coefficients
from the one year of data available. One year of observations
is not necessarily sufficient to observe both completely dry and
saturated conditions at all locations; we discuss the accuracy of
this assumption later in this paper. In arid regions, where the
soil never reaches saturation, a bias correction factor must be
applied to o™ 4P (e.g., [17]).

D. Error Analysis

Here, we derive expressions for the variance and bias in esti-
mates of RVI and mg due to noise. We also derive expressions
for the sensitivity of RVI and m to calibration errors.

1) Noise Errors: Radar backscatter cross-section observa-
tions include noise present in both the instrument and the
observed scene [18]. Noise is generated by various sources, in-
cluding instrument characteristics, data processing, and spatial
inhomogeneities. Noise is summarized by the K, parameter,
i.e., the normalized standard deviation of the observation mea-
surement error, given by

1 2 1
K=y v— 1+ so— + =5
7\ Niooks ( SNR,, SNR§q>

where pg = {HH, VV, HV, VH}, N, s is the number of looks,
and SNR is the signal-to-noise ratio, which is defined as

signal

SNR,, = —

noise floor *
qu

For SMAP, Nj,.ks varies along the swath, reaching a mini-
mum at the swath’s inner edge (150-km cross-track distance).
Therefore, K, is greatest at the inner edge of the swath, for
scenes where the average backscatter is equal to the noise floor
gnoise floor For SMAP, the designated noise floor is — 25 dB,
and the K, error budget allocation is 0.72 dB. Following
standard practice for scatterometer measurements, the latter
quantity refers to 10log,(1 + K},) [19]; converting this value
to linear units gives a K, of 0.18. In this study, we use this
value as an estimate for both K, ~and K, . Note that these
are very conservative estimates. In comparison, of the 2 835 326
individual Aquarius observations used in this study, the median
Aquarius K, values for ogn, ovv, and ogy are 0.01, 0.01, and
0.06, respectively. Almost all (99.99% and 91.79% of the cross-
and copolarized observations, respectively) had K, values less
than 0.18.

A standard error model for radar backscatter cross sections
in the presence of noise is given by

Tppy = Opp(1 + Kp,,w)

Ppp

Opgo = Opg(1 + Kppqw)

where w ~ N(0,1); and oun,, onv,, and oyy, are noisy mea-

surements. By Taylor expansion of the observed RVI around

the true value, analytical approximations for the mean bias and

standard error of RVI estimates are obtained. The expected
value of RVI in the presence of noise is

E(RVI RVI 5 £ pRVIB

( 0) ~ + W

2 2
K3RVE (RVI Y
4 4

RVI
X (2 - 1) (ouu + ovvy).

(oun + ovv)?

K,, K,, RVI?

N 8onv

The terms beyond RVI are a mean bias in RVIj induced by
noise in the backscatter observations. The variance of RVI,
which is useful in quantifying the standard error, is

Var(RVIy)
RVI\ K, RVI* ’
~ <KmeVI (1 — 4> - W(UHH + UVV))
K2 RVI® K, K, RVI?
92 Ppp 2 Z Ppp " Ppa”t 7
* ( 6402, (oun +ovv)” + 8onvy
RVI
X T -1 (UHH +UVV)
K? RVI? /RVI °
Ppg
Teea T (22 ) ) 3
+ 1 ( 1 ) (3

Appendix A includes the derivation of these statistics. Similar
analyses for mg yield

2
5K

In(10) (o33 % — oy )

“)

E(ms,)~=ms —
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In (10) ( max, dB mm dB) Kp+7

Var(my, ) =~
ovv
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Appendix B contains the step-by-step derivations.

2) Calibration Errors: Radar backscatter observations must
be calibrated before use, using targets with known scattering
properties. In addition, for m, a{’;{? 9B and o 9B must be
calibrated for a given location. Imperfect calibration will result
in estimation errors. In practice, the copolarized backscatter
cross sections can be readily calibrated using known targets and
techniques with considerable heritage. Hence, to simplify the
analysis, we do not consider calibration errors in copolarized
backscatter coefficients. We therefore consider the sensitivity

of RVI to changes in oy and the sensitivity of mg to changes
min, dB mdx dB
in oyy and o
RVI cahbratlon uncertainty is dominated by uncertainty

in the cross-polarized term. Let oy = a + boyy (where all
terms are in linear units) be the imperfectly calibrated cross-
polarized backscatter coefficient. This error model accounts
for mean and amplitude biases; more complex error models
are beyond the scope of this study. We adopt the elasticity,
a dimensionless measure of sensitivity, in this analysis. The
elasticity of RVI with respect to b is defined as

RV b ORI
Ab—0 A RVI 9b

Assuming that the imperfectly calibrated value is locally “near”
the calibrated value, we may evaluate the elasticity at a = 0,
b=1to get

Ervip
b oRVI
~ RVI b |,y
o O’Hvb 20’Hvb
- a+ bopy oHg + ovv +2(a+b0’Hv) a=0,b=1
RVI
— 1 —_——_—

4

The elasticity of RVI with respect to a is undefined at a = 0.
Instead, we consider the proportional error induced by nonzero
a,i.e.,

_ ARVI _ RVI - RV},
€T RVI RVI

(a+ ouv)(2ouy + oun + ovy)
onv(2a + 20y + ogn + ovv)

RVI

=1 -

where ﬁ\?ﬂb:l is calculated using oy = a + oy instead of
opy in (1). If we fix a maximum allowed calibration error |¢, |
and rearrange for a, we obtain an upper bound on the calibration
bias allowed to achieve the error requirement

ouvlea|(20uv + o + ovv)
2onvleq] + oun + ovv

la| < amax =
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It is convenient to express this maximum bias in decibels. In
decibels, amax is given by

all = —10log,o(oav) —

—10logy, (UHV ) . ©)

(—10log o (ouy + amax))

ouv + Gmax

min, dB

The m, calibration error is determined by the oy,

ax, dB .. .
and oy ©" terms. The elasticity of m, with respect to
mm dB .
Oy is
min, dB
oy Omg
Em min, dB = o dB
510y ms  do mm7
m1n dB max, dB
_ Ivv ovvV — Ovyv
- omax dB m1n dB min, dB
Ivv Ivv ovv = Oyy
min, dB 1
_ Ovv 1—
- o max, dB mm dB m
Ovv Ovv s
1
- M(1-— @
ms
where
mm dB
— Oyv
M = max, dB _ _min, dB "
\AY% \AY%
.. dB .
The elasticity of m, with respect to oy, < is
max dB b max, dB
max, dB = vV s —ovv
Ms,0y~y max dB — max, dB  _min, dB
ms  Jo oy oyv
G_mln dB
_ —Oyv 4
T _max, dB min, dB L=M L.
VvV —Ovv

III. RESULTS AND DISCUSSION
A. Aquarius Observations

Global observations of (temporally averaged) mean RVI
generally match known vegetation patterns, with some ex-
ceptions. Fig. 2 shows a global map of mean RVI, which is
generated from Aquarius observations over the study period. In
general, the RVI distinguishes between vegetation density well.
It captures regions of dense vegetation, such as those in the
Amazon and Congo, which have consistently high RVI. More
sparsely vegetated regions in northern Russia and deciduous
forests in the northern United States are also well represented,
with lower mean RVI values. Regions with little vegetation
are also generally well characterized, with low RVI values.
However, there are clearly erroneous regions where vegetation
is significantly overestimated, including the central Sahara and
most of central Australia. Freezing soil is likely negatively
biasing RVI in northern Russia.

Similarly, global observations of mean mg generally match
known soil moisture climatology, again, with some exceptions.
Fig. 3 shows a global map of mean m, generated from the same
Aquarius observations. Given the variability of soil moisture
in time, it captures well the dominant soil wetness conditions
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Fig. 2. Mean observed RVI, calculated using one year of Aquarius observations in (1), starting September 1, 2011.
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Fig. 3. Mean observed m, calculated using one year of Aquarius observations in (2), starting September 1, 2011.
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Fig. 4. Minimum observed oy (in decibels) over one year of Aquarius observations, starting September 1, 2011.

around the world. The northern United States, Pampas region
in South America, and boreal regions in northeastern Europe
and western Russia display the highest mean soil wetness
conditions. Central and western Australia, southern Africa, the
Nordeste region in South America, and the southern reaches of
the Sahara are among the driest regions. However, soil wetness
conditions in most of the Sahara are clearly overestimated, as
are those in much of the Taklamakan desert. In [17], these large
deserts are masked out, as are the Amazon, Congo, and densely

vegetated regions in Indonesia and Malaysia. Furthermore, sub-
stantial empirical bias corrections (of up to 6 dB) are applied to
09,48 in the Arabian Peninsula, Northern Africa, southwestern
United States, Chile and Patagonia, and central Asia.

While the minimum and maximum backscatter coefficients
in a time series are highly sensitive to outliers, the minimum
and maximum values in the Aquarius time series are reason-
able and consistent with expectations. Fig. 4 shows a global
map of minimum observed VV copolarized backscatters, in
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Maximum observed oy (in decibels) over one year of Aquarius observations, starting September 1, 2011.
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Fig. 6. Dynamic range of oy (in decibels) over one year of Aquarius observations, starting September 1, 2011.

decibels. In general, high copolarized backscatters may result
from strong surface scattering, volume scattering, or double-
bounce interactions between vegetation and the surface [9].
If the dominant scattering mechanism is surface scattering,
backscatters will be higher when soils are wet rather than
dry. A high minimum value indicates that the region is either
consistently well vegetated or the soil is consistently wet. The
Aquarius data show that high minimum values of o+ coincide
with well-vegetated regions in the Amazon, Congo, southeast
Asia, and the United States. The lowest minimum values oc-
cur in dry nonvegetated regions such as the Sahara, Arabian
Peninsula, central Australia, Kazakhstan, and Mongolia. Fig. 5
shows a global map of maximum observed VV copolarized
backscatters, in decibels. A low maximum value indicates that
the region is either consistently lightly vegetated or the soil
is consistently dry. As expected, the lowest maximum values
coincide with deserts.

The observed dynamic range is low in both consistently
well-vegetated wet regions (such as the Amazon) and lightly
vegetated dry regions (such as the Sahara). Fig. 6 shows
the dynamic range of ovyv, in decibels. It is highest in the
northern hemisphere over regions where there is a strong
seasonal change in soil moisture and vegetation (such as the
northern United States and Canada). The Pampas region in
South America—where irrigation leads to strong variability
in moisture and vegetation—and transition regions between

deserts and forests (e.g., the Sahel) also exhibit a high dynamic
range. Complex spatial patterns of high dynamic range regions
over Australia are likely the result of combinations of irrigation
(in southwestern Australia and the Murray—Darling Basin) and
above-average precipitation leading to flooding in the otherwise
arid inland regions. The very low dynamic ranges observed
over Europe and the eastern United States are likely a product
of estimation errors resulting from only using one year of
data. On the whole, the global map is very similar to that of
a previous study [5, Fig. 11(b)]. The main differences occur
in regions where the dynamic range is very small; however,
in [5], a bias correction factor of up to 5 dB is applied to
regions where the soil is likely never saturated. Given that this
map was produced using observations from a different satellite,
over a different time period, and using a different method, the
similarity suggests that the estimates obtained are reasonable,
despite being obtained from only one year of observations.
Furthermore, the dynamic range of oy (see Fig. 7) is almost
identical to that of oy, with only minor differences between
the two.

B. Target Region Observations

A select number of target regions are defined in order to focus
on the temporal behavior of the indices at a site, in addition to
the global analysis with the complete Aquarius ice-free land
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Fig. 7.

coverage. RVI and mg display distinct seasonal cycles and
responses to precipitation. Fig. 8 compares time series of RVI,
myg, and precipitation at eight target regions around the world.
The source of the precipitation data is the 0.25° three-hourly
CMORPH precipitation product [20]. Aquarius observations
were averaged to weekly values and used to calculate weekly
RVI and m values. In each target region, the median RVI and
myg are plotted. It can be seen that, in many cases, ms and
RVI are able to distinguish between changes in soil moisture
and vegetation. For instance, while the time series are noisy,
ms 1s immediately responsive to March precipitation events in
the Murrumbidgee region, whereas RVI is not. Similar behavior
occurs in the Pampas region during February and March. Over
the Amazon and Tanzania, a clear seasonal cycle is evident
in mg that is not present in RVI. The dynamic range of RVI
is smaller than that of m, for most target areas since it does
not use a region-specific calibration. RVI is most variable in
the Murrumbidgee and SMAPVEXI12 target areas. Both these
regions are dominated by irrigated agriculture, with variability
in crop types and phenology likely contributing to the noisiness
in the time series. m is significantly positively biased over the
Sahara. We consider a potential reason for this bias later in this

paper.

C. Noise Error Analysis

Estimation errors in RVI due to noise are positively cor-
related with RVI. Fig. 9 shows the noise-induced standard
error in estimates of RVI. In general, it is positively correlated
with vegetation and RVI and can be substantial. The bias in
RVI due to noise is very low across all vegetation conditions
(not shown). These results suggest that RVI estimates will
require considerable averaging (with multiple looks or tempo-
ral averaging) to overcome estimation errors from propagated
noise. Fortunately, the low bias means that these errors can be
averaged out with no residual bias.

Estimates of my are usually highly sensitive to errors when
the dynamic range is low. Fig. 10 shows how the absolute bias
and standard error of m estimates vary with dynamic range
in the presence of noise. Where the dynamic range is small
(< 1 dB), both the bias and the standard error in mg are
very large. Due to the spatial and temporal averaging of m

Dynamic range of oy (in decibels) over one year of Aquarius observations, starting September 1, 2011.

in Figs. 3 and 8, its high standard error is not apparent. In
general, however, regions in which the oy dynamic range is
small will require significant averaging to remove estimation
errors. Even with sufficient averaging, biases will remain that
cannot be removed.

Estimation errors in mg are highest over highly vegetated
and very dry regions and agree well with previous studies.
Fig. 11 shows the bias induced in estimates of m, by noise.
The bias is consistently very low everywhere, except for highly
vegetated regions like the Amazon and Congo. Fig. 12 shows
the standard error in estimates of mg due to noise. It is highest
over highly vegetated (e.g., Amazon and Congo) and very dry
regions (e.g., Sahara and Arabian Peninsula). These results are
also in agreement with those of a previous study [5, Fig. 11(c)].
The order of magnitude of errors is consistent, noting that we
display the standard error, whereas the variance is mapped
in [5]. Furthermore, bias corrections made in [5] over some
regions where the dynamic range is low will result in lower
mg standard error estimates in that study. There is some
disagreement over the eastern United States and southeastern
China; these discrepancies over populated areas may be due to
unflagged RFI in the Aquarius observations.

D. Calibration Error Analysis

RVI is sensitive to additive errors, such as those from uncer-
tain calibration, in the cross-polarized backscatter coefficient.
Fig. 13 shows the maximum cross-polarized calibration bias
adB_allowed to maintain calibration error in the range |e,| <
0.1, for different combinations of mean oy and oyyg + ovy
observed by Aquarius during the study period. While the
tolerated bias is small in all cases, it is higher for higher
backscatter values since the bias makes a smaller contribution
relative to the overall signal. As the backscatter values decrease,
the tolerated bias rapidly decreases. Since the cross-polarized
backscatter coefficient appears in both the numerator and the
denominator of RVI, the calibration bias will positively bias
RVT for sufficiently small backscatters, regardless of the sign of
a. Note that some of the Aquarius observed values are below the
SMAP noise floor (conservatively, — 28 dB for copolarized and
— 25 dB for cross-polarized). Fig. 14 plots a8 for |e,| < 0.1

globally using mean backscatter observations from Aquarius.



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

90 N

45 N SMAPVEX12
US Midwest
~
o
Amazon
o . o
45 S Murrumbidgee

S S S S o
0 45 E 90 E 135 E 180 E
Murrumbidgee
1100
E 1r E
E E
ko K]
= £
g g
> =
3 g
T T
o [N
o 4
Q Qo
3 3
; c 02- 170 g
E l 1 i 'l b
0 o 0 ] i P il 5., Ly
Qct Nov  Dec Jan Feb  Mar Apr May  Jun Jul Aug Oct Nov Dec  Jan Feb  Mar Apr May  Jun Jul Aug
Nordeste Pampas
1100 100
+ E b €
1 £’ £
=80 = 180 =
3 8
O.BW : - e :
06 ~ I~ ™oz 06 P~ \ /I\—\//-\\ =
.6~ IN—" ~ ~ x 0.6 - @
/ il 4 N \/\\// \\J/ \\-\ A ; i /I \ 2| ;
——— TN S~y o Nage, N 'R s I dao T
0.4f I 04r | AV Ny / 5
g g SO E
- v
0.2f R A 20 2
© ©
(o} o
= =
] ,,J, SR WU T O TS A 1,
Oct Nov  Dec Jan Feb  Mar Apr May Jun Jul Aug Oct Nov  Dec Jan Feb  Mar Apr May Jun Jul Aug
Sahara SMAPVEX12
100 1100
1+ £ 4k £
£ £
-80 = 180 =
o0l 2 o8 £
[ s
-160 > 2>
0.6 — e T =
™S ——— — T e N T TN e, TN e ey © ©
z z
40
- [ [
0.4 g g
N
D'ZY'JVV\’_WZO £ E
© ©
L il L
0 I L L L L | L | o L 1l o 0 T e A L o
Oct Nov Dec Jan Feb  Mar Apr May Jun Jul Aug Oct Nov Dec Jan Feb  Mar Apr May Jun Jul Aug
Tanzania US Midwest
1100 100
- E B
1 E ! £
" 80 = -80 =
- SN g WAVA \ /i 7 N - [
S - R / 77 N\ \'v 71\ = L -1
06—/ M7 S Fos N \/ NN % © 2
Bl > = g / / Vv \ g
T / \4 v \ T
04l 10 & o4 < i v 140 &
E S 0 1 o}
3 3
0.2F 120 c 02 120 ¢
@ ©
MM 2 g
0 ol i i o 0 o
Qct Nov  Dec Jan Feb  Mar Apr May  Jun Jul Aug Oct Nov  Dec  Jan Feb  Mar Apr  May  Jun Jul Aug

Fig. 8. Time series of median RVI, median m s, and mean precipitation over eight target areas. RVI and m values are calculated at weekly intervals; precipitation
is calculated daily.
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Fig. 11.  Global map of bias in ms, using Kp,, = Kp,, = 0.18 and (4).

Sensitivity of RVI to bias in the cross-polarized calibration
offset is greatest in regions that are sparsely vegetated. In these
regions, an offset as small as a ~ 10~* (in linear units) will
result in RVI errors of 0.1.

In highly vegetated regions, which are of arguably greater
interest in studies using RVI, the problem is significantly re-

duced. RVI is relatively insensitive to the multiplicative term
in the calibration error b. Near (a,b) = (0, 1), ARVI = Ab x
RVI x (1 — (RVI/4)), which is, at most, 0.75Ab. Therefore,
we may expect strong positive biases in RVI in lightly vegetated
regions (where oy is very low) due to the cross-polarized cal-
ibration bias, but multiplicative calibration errors are unlikely
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to significantly affect results. This calibration error bias may be
one explanation for the positive bias in RVI estimates over the
Sahara and central Australia in Fig. 2.

While the calibration parameters in mg correspond to phys-
ical quantities, there is still considerable uncertainty in their
true value. For instance, due to outliers and noise, estimating

min, dB max, dB . .
the true value of oy, and oy is rarely as simple as

taking the maximum and minimum values in a long time series.
Fig. 15 shows the elasticity E, win. v of my to ouan B
for different combinations of mg and M observed by
Aquarius. For a given M, increasing m decreases the sensitiv-

ity of my to a{/n{?’ B, Fig. 16 plots M globally, using Aquarius
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observations. It generally increases with decreasing dynamic
range and is highest over the Amazon, Sahara, Congo, Arabian
Peninsula, and Europe. Increasing M leads to substantially
greater sensitivity to both oiar B and o3 B, These re-
sults show that £ win, a5 and E/ max, dB are considerable

ERRGAVAVS mS VvV
wherever the dynamic range is small, over deserts, densely veg-

etated regions, or regions with complex topography. Potential
methods to mitigate this sensitivity include removing outliers or
setting maximum and minimum backscatter values to averages
of ranges of extreme high and low values, respectively. Regions
where the soil either never saturates (e.g., deserts) or never com-
pletely dries (e.g., rainforests) will require empirical bias cor-
rections, such as those described in [5] or [6] and used in [17].

It should be noted that this study considers noise errors
and calibration errors independently, as in previous studies [5],
[6]. However, errors may interact nonlinearly. These impacts
require further investigation. We also do not consider errors that
cannot be represented in a K, noise framework, which likely
include some errors due to terrain inhomogeneity, an error
source, which warrants further attention. Finally, an alternative
explanation for the relatively high backscatters observed over
deserts is that the results are not due to measurement errors

>10

but to real soil volume scattering. For dry soils, the penetration
depth at L-band may extend to a meter or more, leading to non-
negligible volume scattering [21], [22]. There are insufficient
data to test this hypothesis, but it deserves attention in future
studies.

IV. CONCLUSION

This study has quantified the likely impacts of SMAP radar
backscatter cross-section uncertainty on satellite estimates of
two radar-only vegetation and soil moisture indices: RVI and
ms. We use new observations from the Aquarius satellite
mission to map these impacts globally. The regional patterns
of the Aquarius observations (in particular, the dynamic range
of oyv) are consistent with expectations and previous studies.
Over a range of different landcover conditions, RVI and m
exhibit distinct seasonal cycles and responses to precipitation.
However, while the RVI generally captures vegetation patterns
well, it significantly overestimates biomass in some dry regions.
We suggest that this may be due to the high sensitivity of RVI
to additive calibration errors in the cross-polarized backscatter
coefficient over lightly vegetated regions. Estimation errors in
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RVI due to noise are positively correlated with RVI and can
be large. However, since there is no significant mean bias,
sufficient temporal/spatial averaging can remove these errors.
Similarly, m tends to overestimate soil wetness in particularly
dry regions. This is primarily due to the low dynamic range
in oyvy exhibited over these regions. Noise induces significant
bias and variance in m estimates in regions where the dynamic
range is small (e.g., dense forests and deserts). In addition, m
is particularly sensitive to calibration errors in regions where
the dynamic range is small. Based on these findings, we rec-
ommend that global m retrievals should be masked in regions
where the dynamic range is small, such as over dense forest
and deserts. Global RVI observations should be masked over
lightly vegetated regions. Elsewhere, RVI should be calculated
using backscatter coefficients averaged over a sufficiently large
spatial or temporal window to reduce the effects of noise. These
restrictions are relatively minor since soil moisture retrievals
are usually masked over deserts and forests and RVI is of
main interest over vegetated regions. We find that these indices
may be estimated by satellites with sufficient precision over
areas of greatest interest to be used by the SMAP science and
application community, provided they are carefully applied.

APPENDIX A
DERIVATION OF RVI NOISE UNCERTAINTY

RVI is defined as

SUHV

RVI= =f([oum, ovv, ouv]”) =f(o).

ountovy+2ouy
The observed RVI is RVIy = f([oumn,,ovv,,ouv,]?) =
f(o0). In order to understand the impact of noise on RVI
estimation, we Taylor expand RVI to about the true backscatter
values o, retaining up to second-order terms, to obtain

RVIg= f(o) +J(o)(o0 — o) +%(a‘0 — U')TH(O')(U'gf o)

where
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is the Jacobian matrix,
9%f(o0) 9%f(o0) 9% f(o0)
6‘712{1—10 . 30’HH030'VV0 - aUHHOaUHVU -
_ 9%f(o0) 9%f(a0) 9%f(o0)
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is the Hessian matrix and
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We can now estimate the first two moments of RVIj using
its Taylor expansion. Since F(w) = 0 and F(w?) = 1, and by
linearity of the expectation operator, we have

K2 RVI?

Ppp
2
640y

K2 RVI? /RVI
+( 1)

E(RVIy) ~RVI + (oum + ovv)?

K,. K,. RVI?

PCpp " *PCpq

SUHV

Ppq

4 4

RVI
X (2 — 1) (O'HH + UVV)-

The variance can be also estimated from the Taylor series. Pro-
ceeding term by term, as for the expected value derivation, and
using the identities Var(aX + b) = a®Var(X), Var(w) =1,
Var(w?) = 2, and Var(w;w;) = 0 for i # j, we obtain

Var(RVIy)
2

~ | Kpe, RVI
( :

RVI\ K, RVI?
PCpq B

K2 RVI®
_|_ 2 PP

Fy— (onu+ovv ))

2
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2
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APPENDIX B
DERIVATION OF mg NOISE UNCERTAINTY

m is a function of oy defined as

101 min, dB
B ogio(ovv) — Oyv _
ms (UVV) = max, dB min, dB = g(UVV)'
Ovv —Oyv
The observed m is given by
min, dB
- _ 10logyo(ovv,) — Oyv
Msy = g(UVVO) - max, dB min, dB
Ovv —Oyv
in, dB
_ 10logyg(ovvy) + 10logo(1 + Kpw) — oy
- max, dB min, dB
ovv —Oyy

We Taylor expand m, to about the true backscatter value oy,
retaining up to second-order terms, to get

9g
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The derivatives of g are

dg - 10 1
99vVo lgyy  In(10) (U{I,l{a,x’ 4B _ guin, dB) ovv
0%g —10

2 = : 2 -
oy, ovy  n(10) (03{2,"’ dB _ oy dB) ovv
Therefore
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ms,~g(ovv) + 5

Using this expression to calculate the first two moments of m,,,
we find

5K2,
E(mSO) ~ms — max, dB min, dB
In(10) (va A )
2 4
10 K
Var(my, ) ~ = — K2+
In(10) (o3 1=y ) 2
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