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Abstract—Remote sensing algorithms often invert multiple
measurements simultaneously to retrieve a group of geophysical
parameters. In order to create a robust retrieval algorithm, it is
necessary to ensure that there are more unique measurements
than parameters to be retrieved. If this is not the case, the inversion
might have multiple solutions and be sensitive to noise. In this
letter, we introduce a methodology to calculate the number of
(possibly fractional) “degrees of information” in a set of mea-
surements, representing the number of parameters that can be
retrieved robustly from that set. Since different measurements
may not be mutually independent, the amount of duplicate in-
formation is calculated using the information-theoretic concept
of total correlation (a generalization of mutual information). The
total correlation is sensitive to the full distribution of each mea-
surement and therefore accounts for duplicate information even if
multiple measurements are related only partially and nonlinearly.
The method is illustrated using several examples, and applications
to a variety of sensor types are discussed.

Index Terms—Algorithm design, mutual information, retrieval
algorithms, total correlation.

I. INTRODUCTION

R EMOTELY sensed measurements using visible, mi-
crowave, or other spectral observations of geophysical

parameters are generally not a direct observation of the quantity
of interest; the raw observations need to be converted to the
geophysical variables in the so-called retrieval process. In most
applications, multiple geophysical parameters influence the
observations. These additional parameters may not be known.
If so, it is often advantageous to retrieve multiple parameters at
once during a single inversion. If multiple parameters are to be
retrieved, however, additional measurements may be needed.
These may be obtained by increasing the types of measure-
ments made, e.g., using additional electromagnetic frequencies
(spectral channels), or incidence angles and polarizations in the
case of radar or radiometers. The same measurement type can
also be repeated and combined, e.g., by using multiple observa-
tions over the same pixel or multiple nearby pixels. Whatever
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the source of the additional data, the multiple observations are
rarely completely independent. This is demonstrated by the
success of dimensionality-reduction methods in various areas
of remote sensing, e.g., [1]–[3].

It is not possible to retrieve more unknown parameters than
the number of measurements. If the set of measurements is
strongly correlated, a simple integer count of the number of
measurements may be overcounting the number of unknowns
that can be retrieved. It is therefore necessary to be able to de-
rive the (possibly fractional) degrees of freedom that can be ob-
tained by using a certain set of measurements accounting for the
duplicate information. Particularly in the atmospheric sounding
community, this is commonly done by decomposing the signal
into fractional “degrees of freedom of the signal” and “degrees
of freedom of the noise” using a method by Rodgers [4]. This
method assumes that the measurements are linearly related to
the retrieval parameters. For many nonlinear retrieval processes,
a single linearization may not be appropriate for use in design-
ing an algorithm that is expected to be applied to large regions
or even globally. Furthermore, Rodgers’ method assumes that
all errors are additive and have a Gaussian distribution. Not all
sources of error are additive and Gaussian (for example, speckle
noise in radar measurements is multiplicative, or non-Gaussian
when transformed to additive decibel units), and error magni-
tudes may depend on ancillary variables whose global distribu-
tion is not Gaussian. The construct of Rodgers’ method limits
it to Gaussian variables (since only the covariance is used to
characterize their probability densities), and an extension to the
non-Gaussian case is not possible. In this letter, we present an
alternative methodology for those cases when Rodgers’ method
is not appropriate. We introduce a framework that calculates
the maximum number of fractional degrees of freedom [here
termed the degrees of information (DoI)] in a set of measure-
ments. The calculation depends on the full probability density
function (pdf) of each of the contributing measurements rather
than just their covariance and is thus expected to better capture
the total amount of information in the measurements. To do
this, we propose the use of the normalized total correlation,
a generalization of the normalized mutual information. These
information-theoretic measures are discussed in Section II.

Information-theoretic concepts have found a wide variety
of applications in remote sensing, e.g., [5]–[9]. Here, mutual
information and its generalization are used for a specific ap-
plication in model selection: determining how many unknown
parameters can be maximally retrieved from a given data set.
The proposed method is independent of, and does not attempt
to influence, the exact choice of parameters to be retrieved,
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only the number of parameters. Although similar information-
theoretic concepts (e.g., appropriately chosen combinations of
joint and/or conditional entropies) could be used to determine
which parameters the observations provide the most informa-
tion about, the choice of retrieval parameters may be driven
by diverse scientific questions or other design factors. The
framework presented therefore determines the maximum DoI
in the data independently of which particular parameters are to
be retrieved or any particular retrieval algorithm. Indeed, it may
not always be practical to introduce as many parameters as there
are DoI, but the method determines an upper bound.

This letter is organized as follows. In Section II-A, the
normalized total correlation is introduced and shown to be
confined between 0 and N − 1. The fractional “DoI” con-
tained in an N -dimensional observation set is linked to the
normalized mutual information. The DoI are dependent on the
precision of the measurements through a bin size parameter Δ,
whose derivation is discussed in Section II-B. This derivation
is illustrated with an example using microwave radiometer
observations. Additional examples are described in Section III.
Finally, in Section IV, the application of the metric to a number
of different common measurement types in remote sensing is
discussed. This latter section is meant to be illustrative rather
than exhaustive.

II. DOI

If measurements are made of two independent random vari-
ables X and Y , they can be used to retrieve two unknowns.
The set of measurements can be said to contain two “DoI.” If
a third measurement Z is added that can be perfectly predicted
from one of the other two random variables, the measurements
still contain only two DoI. In reality, it is more likely that
X and Y are related but not completely independent, and Z
is similarly correlated to some degree with either X and Y .
Depending on how closely related the three variables are, there
could be enough information in the correlated random variables
to retrieve either one or two unknowns. Some measure of the
total amount of information contained in a set of measurements
is therefore needed. The measure should be independent of the
nature of the relationship between the variables (i.e., not re-
stricted to linear relationships) and generalizable to an arbitrary
number of dimensions (number of measurement channels). The
DoI provides such a measure and is introduced in Section II-A.
Section II-B discusses the bin size parameter necessary to
calculate DoI.

A. Definition of Degrees of Information

The Shannon entropy, one of the central tenets of information
theory, is the expected value of the information content derived
from a single observation of a discrete random variable X . It
can also be interpreted as the uncertainty of a variable [10]. The
Shannon entropy can be expressed as

H(X) =
∑
x

p(x) log p(x) (1)

where p(x) is the probability mass function (pmf) of X . If
the random variable has a narrow distribution, an observation
will, on average, provide less information than if it has a very

broad distribution. The H(X) of a discrete random variable is
nonnegative. For multiple variables Xi, the joint entropy is

H(X1, . . . , XN)=
∑
x1

· · ·
∑
xN

p(x1, . . . , xN)log p(x1, . . . , xN ).

(2)

The individual p(Xi) are referred to as the “marginal pmfs,”
and the individual H(Xi) are referred to as the “marginal
entropy(ies)” of each product.

The mutual information is a well-known measure of the
reduction in uncertainty between independent and joint mea-
surements of two random variables X and Y . Mathematically,
this can be written as

I(X;Y ) =
∑
y

∑
x

p(x, y) log
p(x, y)

p(x)p(y)
. (3)

By comparing the joint and marginal probability distribu-
tions, the mutual information quantifies the degree to which
simultaneous consideration of the two variables changes their
distribution. That is, it quantifies nonlinearly how dependent the
two variables are. When X and Y are independent, I(X;Y ) =
0. The I(X;Y ) is maximized when X and Y are dependent
(i.e., perfectly correlated). From the definitions, it can easily be
shown that

I(X;Y ) = H(X) +H(Y )−H(X,Y ). (4)

For proofs of these and other information-theoretic properties
used in this section, the reader is referred to an introductory
information theory textbook, such as [10].

Although a number of different generalizations of the mutual
information exist, the total correlation C [11] captures the
amount of information shared between any of the measure-
ments in a set. Like the mutual information, the total correlation
is the Kullback–Leibler divergence between the joint and the
marginal entropies

C(X1, X2, . . . , XN ) =

∫

x1

· · ·
∫

xN

p(x1, . . . , xN )

× log
p(x1, . . . , xN )

p(x1), . . . , p(xN )
dxN , . . . , dx1

(5)

=
N∑
i=1

H(Xi)−H(X1, . . . , XN ). (6)

We further define the normalized total correlation
Cn(X1, . . . , XN ) as

Cn(X1, . . . , Xn) =
C(X1, . . . , XN )

H(X1, . . . , XN )

=

N∑
i=1

H(Xi)−H(X1, . . . , XN )

H(X1, . . . , XN )
. (7)

To prove that Cn takes a value between 0 and N − 1, we use
the basic property that

H(X1, . . . , XN )≤
N∑
i=1

H(Xi) =⇒ Cn ≥0. (8)
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Sincemaxi(H(Xi))≤H(X1, . . . , XN ), multiplying byN gives

N max
i

(H(Xi)) ≤ NH(X1, . . . , XN ). (9)

Furthermore, since
∑N

i=1H(Xi)≤NmaxiH(Xi) by definition

N∑
i=1

H(Xi) ≤ NH(X1, . . . , XN ) =⇒

N∑
i=1

H(Xi)

H(X1, . . . , XN )
≤ N.

(10)

By inserting this into (7), it becomes clear that Cn ≤ N − 1.
The Cn therefore takes a value between 0 and N − 1. When
the Xi are independent, Cn = 0. When they have a one-to-one
relationship, Cn = N − 1.

The higher the normalized total correlation between the
measurements, the less information they contain. The total DoI
between the Xi is then given by

DoI = N − Cn(X1, . . . , XN ). (11)

Since additional measurements cannot remove information
from the first one, DoI ≥ 1. Since, as mentioned earlier, mu-
tual information and entropy are nonnegative, DoI ≤ N . Thus,
DoI ∈ [1, N ], as expected.

In the limit where C(X1, . . . , XN ) is maximized, H(X1,
. . . , XN ) = H(Xi) for all i. Thus, it is possible to derive an
alternative normalization using the minimum H(Xi). The nor-
malization with H(X1, . . . , XN ) used here is chosen because
it is more conservative since min(H(Xi)) ≤ H(X1, . . . , XN ).
Note that, in two dimensions, Le Hegarat-Mascle et al. [12]
calculated the mutual information between two remote sensing
images, but these were normalized by the entropy of one of the
two images so that the resulting measure is not symmetric.

The aforementioned properties were derived based on the
assumption that the Xi are discrete variables. In remote sensing,
many measurements are continuous rather than discrete. For
continuous variables, several of the aforementioned lemmas are
false, and mutual information does not have an effective upper
bound. Nevertheless, while remote sensing measurements may
appear to be continuous by taking on an arbitrarily large
number of values, the number of possible measurements is in
practice limited by the finite accuracy or precision of the instru-
ments. That is, small fluctuations in measurements below some
accuracy threshold do not provide any physical information.
For a certain bin size Δ, the continuous measurements can be
binned into discrete classes by rounding them to the nearest
interval of Δ. The resulting constant-bin histograms can be
used directly to estimate the pmfs necessary to evaluate Cn.

B. Dependence on the Bin Size Parameter

Using an inappropriate bin size Δ may introduce errors in
the estimation of the pmfs and, thus, in the Cn and DoI. If the
bin size used is too small, the frequency counts in the bins will
be sensitive to noise fluctuations in the data set. If the bin size
used is too large, the estimated marginal and joint pmfs may
mischaracterize (or even miss altogether) certain peaks in the
distribution. Several different approaches have been proposed
in the statistical literature to determine the optimal bin width to
accurately estimate the pmf with a finite sample. Among these,

Fig. 1. Normalized total correlation Cn between Aquarius TbV and TbH as
a function of the bin sizes ΔTbV and ΔTbH . For large bin sizes relative to
the dynamic range of the variables, the Cn suddenly drops when the number of
bins is so low that even the approximate shape of the joint pmf is distorted by
the wide bins. The black triangle corresponds to the bin sizes recommended by
Scott’s rule.

Sturges’ rule for calculating a bin width based on the range of
the data and the number of points is the oldest and the most
common. It has been shown to work well for applications of
mutual information-based image registration [13] and feature
selection [14]. However, it is known to lead to overly large bin
size estimates that oversmooth the histogram, particularly for
large samples sizes (which are expected in remote sensing) [15].
It can also be sensitive to outliers. A better approach is the so-
called Scott’s rule, which calculates the bin size Δxi

from the
standard deviation σXi

of the data instead of their range

ΔXi
=

3.5σXi

n1/3
(12)

where n is the number of points in the sample. The dependence
on n1/3 has been shown to be optimal for minimizing Lp error
norms [15].

The use of Scott’s rule is illustrated using a 2-D example
for ease of visualization. Horizontally and vertically polarized
measurements of L-band brightness temperatures (TbV and
TbH , respectively) from the Aquarius satellite are used [16].
The data span the period from September 1, 2011 to August
31, 2012 over land and across the globe. Aquarius has three
beams with three different incidence angles; only the middle
beam is used here. Fig. 1 shows the bin size dependence of the
Cn(TbV , T bH). Since the range and shape of the distribution
are similar between the two variables, it is not surprising that the
dependence on ΔTbV and ΔTbH is approximately symmetric.
Applying Scott’s rule to each of the TbV and TbH separately
leads to two different bin sizes that can be used to determine Cn.

The Cn(TbV , T bH) = 1.13/7.87 = 0.14 at the optimum bin
size. This is much lower than the Pearson’s correlation coef-
ficient between the values, r = 0.92. The joint pmf shown at
the bottom of Fig. 2 illustrates why. Although the shapes of
the marginal distributions are similar, the long tail in the joint
pmfs adds a significant amount of uncertainty between the two
polarizations. By contrast, it reduces the Pearson correlation
coefficient relatively little because most points fall on or near
the diagonal line. This demonstrates the value of nonparametric
measures of the degrees of freedom in measurements rather
than relying on potentially misleading Gaussian assumptions.
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Fig. 2. (Top) Marginal and (bottom) joint pdfs for observed vertically and
horizontally polarized brightness temperatures (TbV and TbH , respectively)
from the Aquarius satellite. Note that the edges of the joint pdf tails extend
beyond the region shown; the figure is zoomed in for clarity.

The resulting value of DoI = 2− 0.14 = 1.86 allows the
calculation of the number of overpasses that must be combined
to calculate a certain number of parameters from a multitem-
poral time series using these data. Algorithms using dual-pol
radiometric data at L-band from N overpasses can retrieve a
maximum of 1.86 × N parameters. Any dependent information
between observations at different times is due to the autocor-
relation in the physical properties to be retrieved, which is
generally neglected in the retrieval process. Thus, the DoI from
a single set of dual-polarized measurements is multiplied by
N. For example, combining data from two overpasses leads to
DoI2−pass = 1.86(2) = 3.72, which is only enough informa-
tion to robustly retrieve three parameters, even if four mea-
surements are used (two polarizations on two overpasses each).
Indeed, a two-overpass time-series algorithm can be applied to
these data to robustly retrieve three parameters for each pixel: a
single constant vegetation optical depth and the dielectric con-
stant during both overpasses. Additional combinations of over-
pass numbers and retrieved parameters are also possible [17].

III EXAMPLE DOI CALCULATIONS

In this section, the DoI calculation is illustrated for several
additional measurements. Table I shows the Cn(X1, . . . , XN )
for several data sources and compares different rearrangements
of the same time series. The examples of Table I are discussed
one by one hereinafter.

Noisy Linear Relationship: We first consider the case of two
linearly related time series of unit slope, e.g., Y = X , both
distributed normally around 0 with a standard deviation of 1.
The X and Y are jointly sampled but are subject to independent

TABLE I
DOI FOR SEVERAL EXAMPLES

normally distributed noise with a standard deviation of 0.1 to
produce the series x and y. The mutual information between
them measures the respective dependence of variables based on
their joint distributions. The addition of independent noise to
all values strongly reduces the amount of redundancy between
the final measurements; Cn(X,Y ) = 0.21.

Aquarius Multipolarization Backscattering Data σHH , σV V ,
and σHV : Aquarius makes coincident radar and radiometric
measurements. There is a higher normalized total correla-
tion between pairs of two copolarized backscattering coeffi-
cients (Cn(σHH , σV V ) = 0.28) than between a combination
of copolarized and cross-polarized backscattering coefficients
(Cn(σHH , σHV ) = 0.19). This can be understood by noting
that the cross-polarized backscatter is essentially independent
of the soil moisture, unlike the copolarized backscatter. Some
total correlation remains because both the copolarized and
cross-polarized backscatters are sensitive to vegetation and soil
roughness. A set of cross-polarized and copolarized data thus
carries more information than two different copolarizations, as
reflected in the higher DoI. When adding a third polarization,
the DoI increases by less than one, as expected from the
nonzero Cn between all pairs of polarizations. The total Cn in-
creases when combining all three polarizations, suggesting that
the mutual information between different pairs of polarizations
is in different parts of the pmf (e.g., different spatial regions or
seasons). The total DoI is 2.60.

Aquarius Multi-Instrument Data σV V and TbV : Because
radar and radiometric measurements are affected differently
by soil and vegetation scattering, the Cn between coincident
brightness temperature Tbv and backscattering coefficient σV V

data is low, Cn(Tbv, σV V ) = 0.03. Other combinations of
backscatter and brightness temperatures had even lower total
correlation and thus contain more DoI.

IV. APPLICATIONS TO PARTICULAR

REMOTE SENSING OBSERVATIONS

The DoI framework can be applied to a variety of remote
sensing observations and used to determine how many geo-
physical parameters can be maximally retrieved. Note that,
in hyperspectral imagery, the determination of the number of
parameters that can be retrieved from unmixing algorithms
is known as the “intrinsic dimensionality” problem and has
been well studied (e.g., [18]–[20]). The high number of di-
mensions in these images (generally more than 100) makes
total correlation computationally expensive to calculate for
such images. Instead, the primarily application of this method
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is to monospectral, multispectral, and lidar data, as outlined
hereinafter and shown by example in Section III.

Microwave Radiometry: Radiometric measurements are
made at a certain incidence angle, frequency, and polarization.
For a given incidence angle and frequency then, DoI ≤ 2
(DoI ≤ 4 if the radar is fully polarimetric). Additional informa-
tion can be obtained by measuring the same pixel at multiple
incidence angles. This concept is used by the soil moisture
retrieval algorithm of the European Space Agency’s Soil Mois-
ture Ocean Salinity satellite [21], among others. The DoIs
can provide a framework to calculate how many geophysical
and biophysical variables can be determined from a collection
of correlated multiangular measurements. Similar principles
apply for multitemporal retrieval algorithms, which combine
measurements made at different times under the assumptions
that at least one of the retrieval parameters is constant over the
time period between the observations [17] or for multifrequency
algorithms.

Radar: Whether the data are obtained using a real or syn-
thetic aperture, the return from radar systems can generally be
described by a maximum of eight parameters—the phase and
amplitude of the backscattered waves in two possible transmit
polarizations and two possible receive polarizations. (Radar
altimetry applications, which are based on the signal return
time, provide an exception.) Thus, the number of DoIs in a
single set of measurements can be no more than eight, even
though radar scattering is sometimes expressed in a 16-element
Mueller matrix.

As in passive microwave applications, polarimetric, multi-
incidence angle, and multitemporal methods [22] can be used
to increase the number of geophysical variables that can be
retrieved. The DoI can be used to determine how many polar-
izations, angles, or temporal samples are needed.

Lidar: The DoI framework may not be as useful for discrete
pulse lidars as for other measurement types because different
returns view different parts of the canopy. However, DoI can
be informative when applied to waveform-recording lidars,
whether used to retrieve canopy biophysical parameters or
atmospheric composition information. Unlike in radar systems,
the incidence angle does not vary, and multi-incidence angles
cannot be used to increase the DoI in the system. Instead, lidar
observations at multiple wavelengths and depolarizations could
be used to infer multiple properties.

V. CONCLUSION

When designing retrieval algorithms, the first choice to be
made is the number of parameters to be retrieved from the mea-
surements. The DoI framework presented in this letter provides
a method for estimating how many parameters can maximally
be retrieved, depending on the amount of duplicate information
present in the joint pmf of the measurements. The use of the en-
tire joint pmf allows accounting for the fact that less-commonly
occurring measurements add a lot of uncertainty to the retrieval,
and leads to a better estimate of the uncertainty in the data.

The DoI in the measurements are independent of the type of
retrieval algorithm, whether it is statistical, physical, or some
combination thereof. Once the DoI is obtained, the maximum
number of independent parameters that can be retrieved is given
by the floor of the DoI. Generally, the presence of noise implies

that not all the information in the measurements can be used
for parameter retrieval. The true information content of a set of
measurements is thus below the DoI. Most retrieval algorithms
retrieve each parameter independently (i.e., all combinations
of parameter values are possible solutions). In this case, the
degrees of freedom needed for the retrieval is exactly equal to
the number of parameters to be retrieved.
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