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Passivemicrowavemeasurements have the potential to estimate vegetation optical depth (VOD), an indicator of
aboveground vegetation water content. They are also sensitive to the vegetation scattering albedo and soil
moisture. In this work, we propose a novel algorithm to retrieve VOD and soil moisture from time series of
dual-polarized L-band radiometric observations along with time-invariant scattering albedo. The method takes
advantage of the relatively slow temporal dynamics of early morning vegetation water content and combines
a number of consecutive observations to estimate a single VOD. It is termed the multi-temporal dual channel
algorithm (MT-DCA). The soil dielectric constant (directly related to soil moisture) of each observation is also
retrieved simultaneously. Additionally, the method retrieves a constant albedo, thereby providing for the
first time information on global single-scattering albedo variations. The algorithm is tested using three years of
L-band passive observations from the NASA Aquarius sensor. The global VOD distribution follows expected
gradients of climate and canopy biomass conditions. Its seasonal dynamics follow expected behavior based on
precipitation and land cover. The retrieved VOD is closely related to coincident cross-polarized backscatter
coefficients. The VOD and dielectric retrievals fromMT-DCA are compared to those obtained from implementing
the commonly used Land Parameter Retrieval Model (LPRM) algorithm and shown to have less high-frequency
noise. There is almost as much variation in MT-DCA retrieved albedo between pixels of a given land cover class
than between land cover classes, suggesting the common approach of assigning albedo based on land cover
class may not capture its spatial variability. Globally, albedo appears to be primarily sensitive to woody biomass.
The proposed algorithm allows for a more accurate accounting of the effects of vegetation on radiometric
soil moisture retrievals, and generates new observations of L-band VOD and effective single-scattering
albedo. These new datasets are complementary to existing remotely sensed vegetation measurements such as
fluorescence and optical-infrared indices.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Our ability to close the Earth's carbon budget and predict feedbacks
in a changing climate depends on knowingwhere, when and howmuch
carbon dioxide and water vapor is exchanged between the land surface
and the atmosphere. Both these fluxes are intimately tied to vegetation:
roughly 60% of global land evapotranspiration fluxes occur through
plant-mediated transpiration (Schlesinger & Jasechko, 2014), and
vegetation photosynthesis response to increasing CO2 concentrations
is the biggest carbon cycle feedback in climate models (Ciais et al.,
2013; Schimel, Stephens, & Fisher, 2014). Microwave radiometric
data at L-band are sensitive to both vegetation characteristics and
soil moisture. In particular, radiometric observations are sensitive to
vegetation optical depth (VOD). Passive soil moisture retrieving
satellites at L-band like the NASA Soil Moisture Active Passive (SMAP)
(Entekhabi et al., 2010), the ESA Soil Moisture and Ocean Salinity
(SMOS) (Kerr et al., 2012), and the NASA/CONAE Aquarius-SAC/D (Le
Vine, Lagerloef, Colomb, Yueh, & Pellerano, 2007) must properly
account for the effect of VOD on observations in order to accurately
retrieve soil moisture. Furthermore, microwave VOD estimates have
previously been shown to be useful indicators for understanding
vegetation state and variability, complementing the information
provided by optical indices (Andela, Liu, van Dijk, de Jeu, & McVicar,
2013; Poulter et al., 2014; Zhou et al., 2014). VOD is also a potentially
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useful tool for crop monitoring (Patton & Hornbuckle, 2013) that could
help detect crop water stress before optical sensors can (Van Emmerik,
Steele-Dunne, Judge, & van de Giesen, 2014). VOD is directly propor-
tional to total vegetation water content (VWC), with a constant of pro-
portionality that is dependent on frequency and canopy structure. Since
total VWC is related to biomass (it influences the amount of available
storage for water), VOD has been used as an indicator of biomass in
the past (e.g. Liu et al., 2015). However, since vegetation water content
also varies depending on the soil water availability (even in the absence
of changes in biomass), VOD can also be interpreted as an indicator of
vegetation water content useful for studying plant responses to hydro-
logic stress.

The VOD measured by passive microwave sensors is an integrated
measure of vegetation water content and structural effects. The total
VOD is always less sensitive to the lower canopy layers than to the
upper canopy layers, although the exact rate of attenuation of the
microwave signal depends on the canopy. The rate of attenuation is
also frequency-dependent (Ulaby, Moore, & Fung, 1986), although few
studies have been done comparing the effect of frequency on the mea-
sured VOD. If differences in canopy penetration between observations
at different frequencies are ignored, different satellites can be combined
into a single long-term record of VOD (Owe, de Jeu, &Holmes, 2008; Liu,
de Jeu, McCabe, Evans, & van Dijk, 2011). Such an existing record has
been used as a vegetation indicator complementary to optical indices
(Shi et al., 2008; Andela et al., 2013). VOD retrievals from recently
launched L-band radiometers such as SMOS and SMAP could be used
to extend long-term multi-frequency VOD records (Van der Schalie,
Parinussa, et al., 2015). Additionally, vegetation water content, and
thus the amount of plant stress inferred by measuring vegetation
water content, generally varies throughout the canopy (e.g., Hellkvist,
Richards, & Jarvis, 1974; Bohrer et al., 2005; Janott et al., 2011). Studies
of vegetationwater content based on remote sensingmay thus be better
served by using VOD from lower frequencies such as L-band, which at-
tenuate less quickly and are more sensitive to lower canopy layers. Fur-
thermore, the development of VOD datasets and of joint VOD and soil
moisture retrieval algorithms at L-band is of interest because of the
greater soil sensing depth of these frequencies.

Several approaches exist for the simultaneous retrieval of vegetation
optical depth and soil moisture that is necessary at L-band. Both vari-
ables can be simultaneously derived from a snapshot of measurements
by using information from observations at both horizontal and vertical
polarizations (Jackson, Hsu, & O'Neill, 2002; Meesters, de Jeu, & Owe,
2005). However, because the two polarizations are closely correlated,
such a retrieval is sensitive to noise, as will be further explained in
Section 2. If multi-angular data are available, such as in the case of
SMOS, these can be used to further constrain the retrievals (Cui, Shi,
Du, Zhao, & Xiong, 2015). Alternatively, observations from multiple
overpasses can be combined into a single retrieval. Such a multi-
temporal approach rests on the assumption that vegetation state as
reflected in VOD is likely to change more slowly than soil moisture,
and is constant over adjacent overpasses.

The use of a time series approach also allows for the retrieval of the
single-scattering albedo, the amount of power scattered by the vegeta-
tion cover. The value of albedo is often assumed to be independent of
polarization and constant as a function of land cover (Van de Griend &
Owe, 1994; O'Neill, Chan, Njoku, Jackson, & Bindlish, 2012; Kerr et al.,
2011). Its values are often close to zero (Wigneron et al., 2004). A
correctly chosen effective value of the single-scattering albedo allows
accounting for higher-order scattering effects, which are especially im-
portant over moderate to dense vegetation cover (Kurum et al., 2012).
Many of the land-cover dependent values used in the literature are
therefore in some sense fitting-parameters (Wigneron et al., 2004;
Kurum, 2013). However, a land-cover dependent assignment is sensi-
tive to errors in the land cover classifications, as well as to variations
in albedo within a certain land cover type. A sensitivity study has
shown that errors in assumed albedo add more uncertainty to single-
incidence angle VOD and soil moisture retrievals than errors in soil
and canopy temperature, soil roughness, or bias or noise in observed
brightness temperature (Davenport, Fernandez-Galvez, & Gurney,
2005). The ability to retrieve albedo directly rather than relying on
assumptions about its value may therefore significantly improve both
VOD and soil moisture retrievals.

In this study, we introduce a new multi-temporal algorithm for
simultaneous retrieval of vegetation optical depth, effective single-
scattering albedo, and soil dielectric constant using dual-polarized sin-
gle incidence-angle observations at L-band frequencies. The method is
referred to as the multi-temporal dual channel algorithm (MT-DCA)
and tested using three years of L-band passive observations from the
Aquarius sensor. The paper is organized as follows. Section 2 motivates
the need for a time series algorithm to avoid compensating errors when
retrievingmultiple parameters froma snapshot of dual-polarized obser-
vations. Section 3 describes the algorithmdesign. The testingmethodol-
ogy and datasets used in this paper are described in Sections 4 and 5,
respectively. Retrieval results are shown in Section 6 and discussed in
Section 7.

2. Algorithm motivation

2.1. Classical retrieval approach

Almost all radiometric soil moisture retrieval approaches are based
on the so-called τ–ω model, a zeroth-order solution of the radiative
transfer equations describing the emission of the land surface

TBp ¼ Tsoil
B þ Tcanopy

B

¼ Ts 1−rp
� �

γ þ Tc 1−ωð Þ 1−γð Þ 1þ rpγ
� �

:
ð1Þ

The TBp
is the brightness temperature at polarization p, which is

either horizontal (H) or vertical (V), Ts is the effective land surface
temperature, rp is the rough surface reflectivity, and Tc is the canopy
temperature. The quantity γ is the vegetation transmissivityand ω is
the vegetation single-scattering albedo, the fractional power scattered
by the vegetation.

The vegetation transmissivityγ accounts for attenuation of the emis-
sion through the vegetation layer. It is related to the vegetation optical
depth,

γ ¼ exp −
VOD
cos θ

� �
; ð2Þ

where θ is the measurement incidence angle. When the VOD equals 0,
there is no vegetation attenuation on the microwave emission from
the soil and the correspondingγ is 1. The VOD increaseswith vegetation
density; over dense vegetation, γ approaches 0 and the microwave
emission is dominated by vegetation. VOD is commonly assumed to
be linearly proportional to vegetation water content (Jackson &
Schmugge, 1991; Van De Griend & Wigneron, 2004),

VOD ¼ b � VWC; ð3Þ

where the constant of proportionality b depends on the vegetation
structure.

The rough surface reflectivity can be decomposed as rp=
rp⁎exp(−h cos (θ)n), where rp⁎ is the reflectivity of the flat (smooth)
soil, h is the roughness parameter, which is assumed to be linearly
related to the root-mean-square surface height of the soil surface, and
n is an angular value (Ulaby & Long, 2014). The Fresnel equations relate
rp⁎ to the complex dielectric constant k of the soils, which is in turn
governed by soil moisture and soil texture.

Most soil moisture retrieval algorithms rely on the same (or an
equivalent) mathematical problem. In order to determine the vector
of unknown parameters X from a set of observations, the mismatch



Fig. 1. Cost function J as a function of VOD and k for a sample set of observations (July 16th,
2012, for a pixel centered at 19.48°N, 103.53°W in Central Mexico). The ‘true’ solution of
the cost function (without noise added) is shown by a black dot. A small amount of simu-
lated noise is added to the observations, 0.005 for theH-pol and−0.002 for the V-pol. The
contours of the resulting noisy cost function are shown as black lines. The noisy solution of
the resulting cost function is shownby a red triangle and is far away from the true solution.
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between the observed (TBp

obs) and modeled brightness temperatures
(TBp

model(X)) is minimized,

X ¼ min
X

J ¼
X
p¼H;V

Tobs
Bp −Tmodel

Bp Xð Þ
� �2

; ð4Þ

where p represents the polarization.
There are a variety of algorithms that differ in how many observa-

tions are combined – whether the sum over polarization is included or
whether additional summations are made over different incidence
angles, frequencies, or overpasses – and in howmany unknowns are in-
cluded in X. The cost function in Eq. (4) can also incorporate additional
terms to account for a priori information on the unknown parameters
and its associated uncertainty (Piles, Vall-llossera, Camps, Talone, &
Monerris, 2010), which is the solution adopted for the SMOS L2 proces-
sor (Kerr et al., 2011). Soil moisture is a key unknown and is always re-
trieved. By contrast, additional parameters such as h,ω, and VOD can be
either assigned dependent on some ancillary information or retrieved
alongside soil moisture.

2.2. Time series motivation

In order for the retrieved values to be stable – that is, insensitive to
measurement noise – the algorithm cannot have more unknowns
than the degrees of freedomprovided by themeasurements considered.
If this requirement is not met, the global minimum of the cost function
in Eq. (4) will be overly sensitive tomeasurement noise or small imper-
fections in the radiative transfer model. For the SMOS satellite, multiple
incidence angles are used to obtain additional degrees of freedom (Kerr
et al., 2012). For data where only a single frequency and incidence angle
is available, either a so-called single-channel algorithm using a single
polarization (e.g. Bindlish, Jackson, Cosh, Zhao, & O'Neill, 2015) or a
dual-channel algorithm (DCA) using both the horizontal and vertical
polarizations (e.g. Jackson et al., 2002) can be used. A commonly used
variant of the traditional dual channel algorithm is the Land Parameter
Retrieval Model or LPRM (Owe et al., 2008). It uses only the H-
polarization in the cost function, but also uses the V-polarization as an ad-
ditional piece of information by algebraically re-arranging the tau–omega
model to provide a direct relationship between k and VOD (Meesters
et al., 2005) that is a function of the multi-polarization difference index
(Owe, de Jeu, & Walker, 2001). For both the traditional DCA and LPRM,
two polarizations are used to retrieve two unknowns.

Because the horizontally and vertically polarized brightness temper-
atures are highly correlated, there is duplicate information in the two
measurements. This duplicate information reduces the ability of a DCA
or similar algorithms to robustly retrieve two parameters in the
presence of measurement or modeling noise and adds errors to the re-
trievals (Konings, McColl, Piles, & Entekhabi, 2015). This is illustrated in
Fig. 1. The background colors show the cost function, as a function of
VOD and k, for a sample set of observations. The perfect retrievals
would be those leading to the minimum of the cost function, indicated
by a black dot. Small amounts of noise (ΔeH=0.005, Δev=−0.002)
are added to the ‘observed emissivities’ to simulate observational or
model noise. The cost function contours of the noisy observations are
overlaid as black lines and the new solution (and associated retrievals)
is shown as a red triangle. This example shows that even small amounts
of noise cause large shifts in the observed solution due to compensation
between VOD and k along the diagonal curvature of the cost function.
For only a single polarization the cost function moves up and down by
a far smaller amount than the distance between the true and noisy solu-
tions (not shown), but retrieving two variables simultaneously allows
compensation between the two. This leads to large errors in retrieved
VOD and k. Konings, Entekhabi, Chan, and Njoku (2011) performed an
observing system simulation experiment (OSSE) in which the errors
associated with different retrieval algorithms were tested over an area
representing the United States by using known truth conditions and
simulating observations with realistic parameterization, model, and
observational errors. Both the bias and random errors of retrieved soil
moisture increased several fold for a dual-channel algorithm relative
to a single-channel algorithmdue to compensating errors. This is consis-
tent with the effect of observational errors tested in a smaller-scale
OSSE (Crow et al., 2005), where dual-channel algorithm errors were
also significantly higher than single-channel algorithm errors.

The problem of compensating errors can be reduced by using
additional observations to increase the ‘Degrees of Information’ (the
fractional degrees of freedom) (Konings et al., 2015) in the data used.
The use of additional observationsmakes the retrieval problem less sen-
sitive to noise. For sensors like SMAP where only a single incidence
angle and frequency is available, this can be achieved by combining
measurements from different overpasses. If the time between different
overpasses is sufficiently short, vegetation properties can be assumed
constant across the different overpasses. This assumption has also
been used to improve multi-angular soil moisture retrievals from
SMOS (Wigneron, Waldteufel, Chanzy, Calvet, & Kerr, 2000; Kerr et al.,
2011). The soil dielectric constant varies much more rapidly than
vegetation and must be retrieved separately for each overpass. Adding
each additional overpass therefore increases the number of (correlated)
observations by two, but the number of unknowns by only one (by
assuming the same VOD, the only extra unknown is the new k).

3. Algorithm design

3.1. Moving window time series design

For each retrieval, the time series algorithm proposed in this work
combines all observations within a movingwindow and retrieves a sin-
gle value of VOD along with N different values of the dielectric constant
k, whereN is equal to the number of overpasseswithin themovingwin-
dow. Thus, the retrieval is the solution to,

min
X¼V OD;k1 ;…kN

J Xð Þ ¼
XN
t¼1

X
p¼H;V

eobsp −emodel
p Xð Þ

� �2
: ð5Þ

The MT-DCA algorithm retrieves N + 1 independent parameters
(1×VODandN× k)with 2 ×N observations (H×N and V×N). Increas-
ingN increases the number of measurements available for the retrieval,
but also increases the possible errors from changes in VODover the time
period spanning the observations (e.g. violations of the assumption
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that VOD is constant across theN overpasses). The optimal choice ofN is
thus the minimum value such that the 2 × N observations provide
enough information to determine N + 1 parameters. Because the H-
and V-polarized emissivities at any given pixel and time are correlated,
however, they contain duplicate information and do not provide 2 full
degrees of information for the retrieval. Instead, themeasurements pro-
vide some fractional number of ‘Degrees of Information’ (DoI). The DoI
is less than two by an amount depending on the non-linear correlation
between the polarizations. It can be estimated using the normalized
mutual information between the Aquarius-based polarized brightness
temperatures. Here, the H- and V-polarized data together contain 1.86
Degrees of Information (Konings et al., 2015). Using measurements at
independent days provides 1.86 × N DoI. The DoI provide an upper
bound on the number of parameters that can be estimated robustly
from a given set of observations. Depending on the forward model
and algorithm implementation, this bound may or may not be reached.

To find the minimum N that allows robust retrieval, the ratio of the
total degrees of information divided by the total number of unknowns
can be used. That is, the retrieval ratio RR=1.86 ⋅N/(N+1). If RR is
greater than 1, the retrieval algorithm is expected to be robust to
noise. Fig. 2 plots RR for several values of N. The DoI and the resulting
RR are also separately calculated for each land cover type by using
only the Aquarius measurements over pixels of that land cover type.
Because the non-linear relationship between the polarizations varies
between land cover classes, the relationship between the two is weaker
when data frommultiple land cover types are combined. TheDoI and RR
therefore increase when calculated across all pixels rather than only
those of a single land cover type. A choice of N = 2 is enough to get
robust retrievals (RR N 1), so two overpasses are combined for this
application.

At each pixel, two different values of VOD are retrieved for each
overpass: once when the current overpass is the first of two in themov-
ing window, and once when it is the second. Similarly, k is retrieved
twice for each overpass and pixel depending on the location of the
moving window. In each case, the two possible window positions are
averaged to provide a single dataset of VOD and k. The two possible
retrievals for each k (estimated from differentmulti-temporal windows
associated with each overpass) will later be compared as a consistency
check. Since Aquarius has a revisit time of 7 days (see Section 5.1),
retrievals are only performed when there are at least two coincident
observations in 14 days. This filters out times when missing data
might otherwise affect the validity of the assumption that VOD is
constant between data takes.
Fig. 2. Retrieval ratio of degrees of freedom for the different land uses and varying number
of dual-polarized observations.
3.2. Albedo retrieval

Since the albedo is sensitive to canopy architecture and influences
the retrieved values of VOD and k (Davenport et al., 2005), it is beneficial
to retrieve its value directly instead of using an assumed dependence on
land cover type. Such an assumption is sensitive both to errors in land
cover classification (mostly based on optical data) and to vegetation
variability within land cover types. It is possible to set up a retrieval ap-
proachwherein three overpasses are combined to retrieve 3 values of kt,
a constant VOD, and a constantω. Such an approach has an RR N 1. How-
ever, the results illustrate the fact that the DoI only provides an upper
bound that is not always reached — VOD and albedo compensate for
each other significantly, leading to temporal fluctuations in retrieved al-
bedo that are unrealistically large relative to its dynamic range and to its
spatial variations (results not shown). The reason for such compensa-
tion can be understood by examining Eq. (1). The total brightness tem-
perature can be separated into two components TBsoil=Ts(1−rp(k))γ
and TB

canopy=Tc(1−ω)(1−γ)(1+ rp(k)γ). If the contribution from
TB
soil is small relative to the total and TB

canopy dominates, the functional
form of the effect of both ω and γ (which is a monotonic function
of VOD) on the observed TB is the same. It becomes impossible to distin-
guish between ω and VOD, causing large fluctuations in each. Fig. 3
shows the relative contribution of the TB

canopy to the total brightness
temperature under different ω and VOD. The contribution of TBsoil to
the total TB is often small, especially over wet and heavily vegetated
soils. This explains why allowing albedo to vary leads to unrealistically
large temporal variations in both ω and VOD.

Instead, albedo is assumed constant (Van de Griend & Owe, 1994;
Wigneron et al., 2004) and retrieved separately across the full record of
observations (and alongside time-varying VOD and k). The retrieval of al-
bedo is robust for a given pixel if the total DoI across the M VOD–k re-
trieval pairs throughout the time series (M ⋅DoI ⋅N) is greater than the
total number of unknowns (1+M(N+1)). If two consecutive overpasses
per VOD–k retrieval pair are used (N = 2), this requirement is met if
more than two VOD–k retrievals are available (MN2). If the total number
of available retrieval pairs M≤2, no retrievals are attempted. Otherwise,
all available observations for a given pixel are combined to find ω. The
constant value of albedo is chosen that minimizes the sum of the optimal
cost function for each retrieval pair,

X ¼ min
ω

XM
p¼1

min J

" #

¼ min
ω

XM
p¼1

mink1t ;k2t ;V ODt

XN
t¼1

X
p¼H;V

Tobs
Bp

−Tmodel
Bp Xð Þ

� �2
" #

: ð6Þ
Fig. 3. Relative contribution of the vegetation canopy to the total brightness temperature
emitted atH-polarization, TBH

canopy/TBH
as a function of albedoω andVOD.A value of k=20

is assumed. Results at V-polarization are qualitatively similar (not shown).
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3.3. Additional parameters

The land surface temperature is determined from ancillary data as
described in Section 5. In this paper, we further retrieve k from the
rough-surface reflectivity for validation of the overall algorithm. The
roughness parameter h is assumed to be equal to 0.13, the average of
the different land-cover dependent values assumed by SMAP (O'Neill
et al., 2012).
4. Methods

The MT-DCA algorithm is applied to three years of data from the
NASA Aquarius sensor. While an alternative version of MT-DCA could
be build that retrieves soil moisture directly instead of the soil dielectric
constant k, here we retrieve soil dielectric constant in order to estimate
parameters that are entirely independent of ancillary data (such as soil
texture), whichmight contain errors. A similar approachwas previously
used by de Jeu, Holmes, Parinussa, andOwe (2014). The search space for
k is limited between 2.5 and 35, values that were chosen based on the
Mironov dielectric mixing model (Mironov, Dobson, Kaupp, Komarov,
& Kleshchenko, 2004) for a range of soil types. For VOD, the search
space is limited to values between 0 and 1.3 Np. Validation of the
resulting VOD retrievals using direct ground-based measurements
of vegetation water content is difficult, as no regional monitoring
networks exists at the spatial scale of the Aquarius satellite. Vegetation
water content is highly spatially variable, so that any in situ measure-
ments that cover only a small fraction of the total Aquarius instrument
field-of-view scale cannot be considered representative. It is therefore
difficult to directly validate VOD data. Instead, the spatial patterns of
the retrieved datasets are examined for physical realism. Additionally,
several focus pixels are chosen that represent relatively homogeneous
land cover conditions (measured using the Gini–Simpson index;
Simpson, 1949) on the discrete land cover classes, as proposed in
Piles, McColl, Entekhabi, Das, and Pablos (2015) and a wide variety of
climatic and land cover conditions. One of the SMAP Core Cal/Val sites
(SMAPEx) is also chosen as a focus pixel. The specific location and
dominant land cover type of each focus pixel are included in Table 1.
The temporal dynamics of each of these focus pixels are compared to
the temporal dynamics of precipitation over the same area, which is
expected to have a strong influence on vegetation water content in
many regions.

The MT-DCA VOD retrievals are also compared to those from the
commonly used LPRM algorithm (Owe et al., 2001, 2008; Meesters
et al., 2005). In order to be able to distinguish algorithm differences
from differences in frequency or sensor characteristics, the LPRM algo-
rithm is implemented and applied to the same Aquarius observations
used for the MT-DCA. The implementation of LPRM used here retains
the core features of the LPRM algorithm: an analytical relationship is
used to predict VOD based on the Microwave Polarization Difference
Index (MPDI), emissivity, and albedo (which is assumed to have a
constant global value known a priori). The cost function retains only
the H-polarized brightness temperature. Note, however, that there are
small differences remaining between this study's LPRM algorithm
Table 1
Target areas: name, location, and dominant IGBP land cover type.

Site name Latitude Longitude Land cover

SMAPEx 34.70°S 145.73°E Open shrubland
Amazon 2.23°S 66.00°W Evergreen broadleaf forest
Nordeste 7.30°S 42.63°W Savanna
Pampas 33.82°S 60.17°W Cropland
East Africa 5.49°S 34.50°E Woody savanna
Central Asia 45.27°N 66.30°E Grassland
West Africa 9.68°N 6.37°E Natural vegetation mosaic
implementation and recent L-band retrievals with LPRM applied to
SMOS (Van der Schalie, Parinussa, et al., 2015; Van der Schalie, Kerr,
et al., in press). In particular, our implementation of the LPRM algorithm
for Aquarius data does not use a soil moisture-dependent roughness
formulation, retrieves a dielectric constant instead of soil moisture,
and does not combine modeled land surface temperatures from multi-
ple depths. The soil treatment is kept the same between the MT-DCA
and the LPRM algorithm in order to isolate and clarify the effects of
the new multi-temporal optical depth and albedo treatment in MT-
DCA. We also keep values of VODN0.35 for the analysis instead of
removing them as in Van der Schalie, Kerr, et al. (in press), as this
would remove retrievals over much of the globe. None of these factors
have an impact on the qualitative results of the comparison here, e.g.
the relative noise levels of MT-DCA and LPRM (see Section 6). For the
LPRM algorithm, ω=0.12 is assumed, based on the value in Van der
Schalie, Kerr, et al. (in press).

Aquarius data are used because it provides both collocated radar and
radiometer observations. This study also explores the relationship
between Aquarius MT-DCA VOD and two alternative active vegetation
indices. Because soil scattering generally leads to negligible depolariza-
tion (Van Zyl & Kim, 2011), the cross-polarized backscattering coefficient
can be used as an index of vegetation scattering intensity andwater con-
tent. Alternatively, Arii, Zyl, Kim, Member, and Current (2010) defined
the Radar Vegetation Index (RVI), which is ameasure of the randomness
of canopy elements and vegetation scattering.

Although the retrieved VOD dataset is the primary focus of this
study, the MT-DCA retrievals are further evaluated by analyzing the
retrieved values ofω and k. The spatial and temporal patterns of the re-
trievals of k are also compared to those of LPRM. To avoid contamination
from differences in assumed soil texture and dielectric mixing, the
retrievals of the dielectric constant k are compared rather than the soil
moisture estimates. The two are monotonically related. Lastly, a consis-
tency check is performed on the k retrievals. For each date and location,
two retrievals of k are obtained— one when the current date is the first
in the two-overpass window, and one when it is the second. The two
sets of retrievals are compared to test the robustness of the retrievals.

Soil roughness is often assumed to depend on land cover type, as in
the SMAP retrieval algorithm (O'Neill et al., 2012) or retrieved from ad-
ditional information, as done by SMOS (Kerr et al., 2011). In this study,
we use a globally constant soil roughness value of h=0.13 and n=2,
the average of the land-cover dependent values used in the SMAP
retrieval algorithm (O'Neill et al., 2012). Using a globally constant
value allows the algorithm retrieval test to be independent of any pos-
sible errors in ancillary land cover data. As a result, any spatial patterns
in the retrievals (see Section 6) are a direct result of the data retrievals
and not of ancillary data. Sensitivity tests showed that the exact value
of soil roughness used had only a minor effect on the retrieved VOD
and albedo values. To isolate the effects of the unique albedo and VOD
retrieval assumptions of theMT-DCA, the same roughness assumptions
are used for both the MT-DCA and LPRM algorithm implementations.

The different datasets used for these analyses are described in
Section 5. All datasets are converted to the same gridding scheme and
spatial resolution, which is chosen to match the Aquarius observations.
Since Aquarius measurements do not exactly overlap over time, the
first 7 days of observations are used to set up the grid. Subsequent
overlapping footprints with centers less than 0.15° from a grid center
are included in that grid cell, otherwise they are excluded.More detailed
information on the gridding strategy can be found inMcColl, Entekhabi,
and Piles (2014) and Piles et al. (2015). To enable spatial and temporal
consistency, all data sets used in this work have been resampled to
the Aquarius footprint grid: land-cover classification data (used in
interpreting the results only) is resampled using the most common
land cover class, while ancillary precipitation and temperature data
are resampled using linear averaging. When converting datasets with
a higher spatial resolution to the Aquarius gridding scheme, a circular
orbital footprint is assumed, with a radius dependent on latitude. Note



Fig. 4. Global maps of mean MT-DCA (left) and LPRM (right) VOD retrievals for the three year period of this study.
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that the land cover data are only used in the analysis of the results, not in
the retrieval algorithm itself.

5. Datasets used

5.1. Aquarius Level 2 data

The Aquarius/SAC-D mission, launched in June 2011, is a joint U.S.–
Argentinian mission to map the surface salinity field of the oceans
from space. It has equatorial crossing times of 6 A.M. (descending)
and 6 P.M. (ascending) and a 7-day repeat cycle. Its payload includes
theNASAAquarius sensor, thefirst combined active/passive polarimetric
L-band microwave instrument in space. It consists of three L-band radi-
ometers and a scatterometer, which image the Earth in a pushbroom
Fig. 5. Time series of weekly mean MT-DCA VOD, LPRM VOD, and precipitati
fashion at 29.36° (inner beam), 38.49° (middle beam), and 46.29°
(outer beam) incidence angles, with 3 dB footprints of 76 × 94 km,
84 × 120 km and 96 × 156 km (Le Vine et al., 2007).

The present study uses three years of global Aquarius Level 2 data
(version 2.0), covering the period from September 1st, 2011 to August
31st, 2014. Dual-polarized brightness temperatures (TBH and TBV) from
the middle beam acquired during morning (descending) overpasses
are used for joint VOD, k, and ω retrievals. Coincident cross-polarized
backscattering coefficients (σHV) are also selected to explore their rela-
tionship with retrieved VOD. Only data from morning overpasses are
used to ensure the vegetation and near-surface soil are in thermal equi-
librium. Data from the central beam is chosen since, out of the three
available beams, the greatest amount of independent information can
be obtained from the center-most angle at 38.49°, which is also the
on over focus pixels. Note the different axes scale for the Amazon series.



Fig. 6. Global maps of standard deviation ofMT-DCA (left) and LPRM (right) VOD retrievals for the three year period of this study. In both cases, a 5-weekmoving average is first removed
from the time series for each pixel, so that the standard deviation primarily reflects high-frequency variability.
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closest to SMAP's incidence angle. Radar and radiometer data have been
screened for orbital maneuver times and Radio Frequency Interference
(RFI) (Le Vine, De Matthaeis, Ruf, & Chen, 2014). In addition, data over
ocean, land–sea transitions, Antarctica, Greenland and non-vegetated
surfaces (water, urban and barren land covers) have been masked out.

5.2. NCEP land surface temperatures and flags

The land surface temperature T provided as auxiliary information
with Aquarius data is used as an input retrieval parameter in the present
study. They are obtained from the National Centers for Environmental
Prediction (NCEP) Global Data Assimilation System (GDAS) and inter-
polated from the daily 0.25° product to the exact time and location of
the Aquarius observations. Pixels with land surface temperatures less
than 0 °C were assumed to have frozen soils and masked out of the
analysis. Similarly, pixels where the observed emissivity was greater
than onewere assumed to have an erroneous land surface temperature
and masked. Lastly, locations and times where NCEP data suggest the
presence of snow or ice cover were also removed from the analysis.

5.3. MODIS IGBP land cover

The 2005 MODIS MCD12Q1 International Geosphere-Biosphere
Programme (IGBP) collection 5 land cover product has been used in
this study to characterize the dominant land coverwithin eachAquarius
footprint. TheMODIS IGBP land cover is a world-wide product at 500-m
spatial resolution that encloses 17 distinctive land cover classes. MODIS
products are freely distributed by the U.S. Land Processed Distributed
Active Archive Center (www.lpdaac.usgs.gov). Note that land cover
Fig. 7. Joint density of Aquarius radiometer-derived vegetation optical depth vs. scatterometer
active and passive measurements (e.g. one at each location and time) were used.
data are only used to interpret the results and not within the retrieval
algorithm.

5.4. MERRA-Land observation-corrected global precipitation

Global daily precipitation data from the Modern Era Retrospective
Analysis (MERRA)-Land run (Reichle et al., 2011) have been used in
this study, with additional corrections applied to match the data from
the Global Precipitation Climatology (GPCP) project and the NOAA
Climate Prediction Center (CPC) (Reichle & Liu, 2014).

5.5. Water fraction

The observed brightness temperatures from Aquarius are corrected
for the effect of emission from surface water bodies. The NCEP Land
Surface Temperature is assumed to be equal to the temperature of any
water bodies in the pixel, whose brightness temperature TBp

water is cal-
culated using the model of Klein and Swift (1977) with an assumed sa-
linity of 0.5 ppt. The fractional coverage of water bodies in the pixel fw is
then used to separate the land emission and water emission contribu-
tions to the Aquarius observations. It is assumed that TBp

obs= fwTBp
-

water+(1− fw)TBp

land, which can be re-arranged to solve for TBp

land. The
static water fraction fw is determined by calculating what fraction of
the high-resolution 250 m land cover data from the MODIS MOD44W
dataset are classified as water or land. The data are first aggregated to
the 3 km EASE grid used in the SMAP Testbed and then converted to
the Aquarius footprint grid. Pixels with more than 10% static water
cover were removed from the analysis entirely.
σHV in linear units (left) and radar vegetation index (right). All available combinations of

http://www.lpdaac.usgs.gov


Table 2
Land cover variability of retrieved albedo w. Parameters for SMAP ω are obtained from
O'Neill et al. (2012).

Land cover type SMAP ω Retrieved: mean (std. dev.)

Evergreen needleleaf forest 0.12 0.05 (0.02)
Evergreen broadleaf forest 0.12 0.05 (0.03)
Deciduous needleleaf forest 0.12 0.06 (0.02)
Deciduous broadleaf forest 0.12 0.03 (0.03)
Mixed forest 0.10 0.05 (0.03)
Closed shrublands 0.05 0.03 (0.04)
Open shrublands 0.05 0.05 (0.05)
Woody savannas 0.12 0.04 (0.03)
Savannas 0.08 0.02 (0.03)
Grasslands 0.05 0.03 (0.05)
Croplands 0.05 0.04 (0.04)
Cropland/natural veg. mosaic 0.065 0.02 (0.03)
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6. Results

6.1. VOD retrievals

A global map of three-year time-average Aquarius VOD retrievals
using the MT-DCA is shown in Fig. 4. The spatial patterns of VOD re-
trievals follow global vegetation distributions, with the highest vegeta-
tion optical depth in tropical and boreal forests and low VOD in arid
climates. Across the Sahel, there is a gradient of increasing average
VOD from North to South. Fig. 4 also shows the mean VOD obtained
by applying the LPRM algorithm. The spatial patterns of the two VOD
temporal means are generally consistent except over densely forested
areas, where MT-DCA values of VOD are higher than those of the
LPRM algorithm. This is consistent with the fact that the MT-DCA
retrieved values of the effective single-scattering albedo are generally
lower than the value of ω=0.12 used by the LPRM algorithm (see
Section 6.2). Over tropical densely forested areas, the MPDI is often
too small for valid LPRM retrievals (only 32% of MT-DCA retrievals in
this region also allow a valid retrieval with the LPRM algorithm), so
that the mean LPRM plot in Fig. 4 may also be sampling a different sub-
set of the seasonal cycle than the annual average of MT-DCA, increasing
the difference between the two. Across the globe, the LPRM algorithm
predicts a negative VOD for 5% of retrievals, which is physically impos-
sible. These occur predominantly over dry, lowly vegetated ecosystems.
Indeed, for regions where MT-DCA predicts a VOD less than 0.1, more
than 50% of all LPRM VOD retrievals are negative. These unphysical
values occur because the LPRM algorithm assumes a fixed relationship
between k and VOD based on an exact equality of the τ–ω model in
both polarizations. In reality, noise and model error (including, for
example, an imperfect ω specification) may mean that there is no
perfect solution to both equations, so after a least-error value of k is
found the accompanying VOD may not be physically realistic. For a
Fig. 8. Global map of
relatively coarse resolution (90 km footprint) satellite like Aquarius,
this may be especially common. The occurrence of negative VOD re-
trievals at L-band is consistent with a previous C-band application of
LPRM in which switching from soil moisture retrievals with possibly
noisy soil texture values to soil dielectric constant retrievals increased
the number of valid VOD retrievals by as much as 200 days a year,
again predominantly over dry areas (de Jeu et al., 2014). In this paper,
LPRM algorithm retrievals that predict a negative VOD are removed
from the comparison. For an additional 10% of global observations
with valid MT-DCA retrievals, including many over the Amazon and
Congo river basins, LPRM retrievals are not made because they have a
MPDI of less than 0.01 (Meesters et al., 2005).

To gain further insight into the behavior of the MT-DCA retrievals,
their temporal dynamics are compared to those of LPRMVOD retrievals
and of precipitation (an expected strong predictor of VOD in several
areas) for several focus pixels in Fig. 5. The pixels are described in
Table 1. All datasets are shown at a weekly temporal resolution, equal
to the average revisit time of the Aquarius satellite. In cases where
there is significant seasonal variability in precipitation, the retrieved
VOD is responsive to accumulated precipitation and consistent with
expected seasonal changes in vegetation water content. For example,
a clear seasonal cycle is evident in the VOD retrievals over West Africa,
Nordeste, and East Africa, where VOD shows a steady decline after the
end of the rainy season. In each of these sites, there is a lag between
the end of the rainy season and the minimum value of VOD. This
suggests that VOD is sensitive to changes in vegetation water content
accompanying the plant response to water stress and/or to changes in
leaf biomass— the response of vegetation to a reduction in (stochastic)
rainfall is not instantaneous. For most target regions, the LPRM algo-
rithm VOD shows more high-frequency variability than the MT-DCA
VOD. Although it is possible that the constant VOD assumption in the
MT-DCA slightly dampens natural variability, the near-oscillatory be-
havior ofmany of the high-frequency LPRMalgorithmretrievals suggest
that they are due to retrieval noise rather than due to true variability in
the signal. Such differences in temporal behavior occur overmuchof the
globe, as shown in Fig. 6. For both MT-DCA and LPRM, the standard de-
viation is shown after the 5-week moving window mean is removed.
This moving window subtraction acts as a high-pass filter, and the
remaining variability is more likely to be retrieval noise than true tem-
poral variability in the signal. The MT-DCA high-frequency variability is
significantly lower than that of LPRM algorithm for much of the globe.
The high-frequency variability of the L2 VOD from SMOS (which uses
multi-angular measurements to determine VOD and whose cost func-
tion also includes a prior based on leaf area index) (Kerr et al., 2011)
is about halfway between that of MT-DCA and that of LPRM (not
shown).

The availability of both active and passive data fromAquarius allows
a preliminary investigation of active and passive vegetation indices.
retrieved albedo.



Fig. 9. Boxplot of global albedo distribution as a function of the constant value assumed for
the roughness parameter h.
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Fig. 7 compares Aquarius MT-DCA VOD data to coincident σHV and RVI
observations by showing the joint density of the two for all locations
and times. The VOD–RVI joint density (R2=0.46) is more flat and has
longer tails than that of VOD and σHV (R2=0.76). That is, there is
more scatter in the relationship between VOD and RVI than in that be-
tween VOD and σHV. This suggests the latter may hold more promise
as an active-microwave-based predictor of VOD for single-channel soil
moisture retrieval approaches. However, some saturation in the σHV

may be occurring for densely vegetated sites.

6.2. Albedo retrievals

Table 2 shows the average retrieved albedo values for each land
cover type, as well as the average parameters assumed in the SMAP
passive-only retrieval algorithm. The retrieved values are generally
lower than the land-cover dependent values published as preliminary
values by SMAP (O'Neill et al., 2012), consistent with theoretical
findings that higher-order scattering reduces the effective albedo values
used in the tau–omega model (Kurum, 2013). Albedo values are gener-
ally higher for vegetation covers with significant woody components,
such as forests and woody savannas. However, there is significant vari-
ability in retrieved albedo values across and within land cover classes.
Grasslands, croplands, open shrublands, and savannas showparticularly
large amounts of variability within each class relative to the class aver-
age. For open shrublands, this variability appears to be due to differ-
ences between the tundra regions and shrublands in less densely
vegetated areas.

A global map of the retrieved constant albedo values is shown in
Fig. 8. Not surprisingly, the spatial patterns of albedo roughly follow
those of average VOD and of expected vegetation cover, although
there are a few more noisy high-albedo outliers. In general, the
Fig. 10.Mean difference betwee
transition between low and high vegetation regions ismore rapid for al-
bedo than for VOD, as can be seen for example in Northern Africa. This is
consistent with the apparent sensitivity of albedo to woody biomass;
average VOD trends may be capturing smaller-scale spatial variations
in leaf cover that albedo is insensitive to.

When the transmissivity γ is high, the τ–ω model predicts that
observed brightness temperatures are sensitive to both the quantities
1−rp⁎ and 1−ω. There may thus be some concern that the retrieved
values of ω will be sensitive to the assumed soil roughness value h
(here taken to be globally constant). Fig. 9 shows that there is very little
sensitivity of the retrieved ω to the assumed value of soil roughness,
likely because errors in h can partially trade off with errors in k.

6.3. k retrievals

For eachdate and location, k can be retrieved at either the start or the
end of the moving window. A global map of the time-average of the
instantaneous difference between the two sets of k retrievals is shown
in Fig. 10. The difference is generally small, as confirmed by the figure
inset, which shows the overall distribution of differences. The standard
deviation between the differences is only 1.54 and there is no significant
bias (mean Δk=0.10). The similarity between the two sets of k
confirms the robustness of the algorithm for soil moisture, VOD, and
albedo retrievals.

Fig. 11 shows the mean retrieved k for both the MT-DCA and LPRM
algorithms. The MT-DCA dielectric constants are slightly higher (wetter
soils) than those of the LPRMalgorithm formuch of the globe. In regions
such as southeastern China, Russia, Scandinavia and Bolivia/Matto
Grosso, there is significantly more spatial variability in the mean LPRM
retrievals than in the MT-DCA ones. Over much of the Amazon and
Congo basins, LPRM retrievals are not valid because the MPDI is not
sufficiently large (Meesters et al., 2005). There are a few pixels in the
Amazon where the average LPRM k is much higher than for MT-DCA,
but this is probably a mixture of higher LPRM retrievals and the fact
that LPRM retrievals are not valid during many times of the year, so
that the two averages may represent different seasonal cycles. When
the LPRM algorithm is applied to Aquarius with albedo values from
MT-DCA instead of the LPRM assumed value of 0.06 (Owe et al.,
2008), the difference in average k reduces to near-zero values for the
vast majority of pixels (not shown), suggesting that the ability to
retrieve albedo is an important component of the MT-DCA algorithm
for soil moisture retrievals. The effect of the albedo assumption is
smaller for VOD retrievals than for k retrievals, but also significant.

Time series of MT-DCA and LPRM k retrievals over the focus pixels
for the study period are shown in Fig. 12. The temporal dynamics of re-
trievals from both algorithms are very similar, though there is a slight
bias between the two in many cases. In the Amazon pixel, the seasonal
n the two sets of k retrieval.



Fig. 11. Global maps of temporal mean k retrieval for Aquarius (left) and LPRM (right).
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cycle in soil dielectric constant is considerably larger than that of VOD
(Fig. 5), consistent with the fact that forests in this region access deep
stores of groundwater (Baker et al., 2009). Long drydowns in West
Africa and Nordeste occur more slowly for MT-DCA than for LPRM,
though it is difficult to say which is more accurate at these large scales.

7. Discussion and conclusions

A new method, the multi-temporal dual channel algorithm (MT-
DCA), is proposed to retrieve microwave vegetation optical depth
(VOD), the effective single-scattering albedo ω, and soil dielectric
constant (monotonically related to soil moisture) from time-series of
dual-polarized L-band radiometer observations. It is applied to three
years of Aquarius data at L-band. The algorithm relies on the premise
Fig. 12. Time series of weekly mean MT-DCA k, LPRM k, and precipitation
that vegetation changesmore slowly than soil moisture. Amoving aver-
age window is used to combine observations from two overpasses
while retrieving only a single constant value of VOD alongside the
dielectric constant for each of the two overpasses. Single-scattering
albedo is assumed to be constant in time and optimized separately
across the full record of observations. Note that when soil moisture
conditions are similar during the two overpasses, observations from
the second overpass do not provide additional information and can
lead to noisy retrievals. For Aquarius applications, using 3 overpasses
or more leads to a moving window size of 21 days or more, over
which the assumption of constant vegetation may not hold. For other
satellites with a more frequent revisit time, using a slightly longer
window can increase the chance that soil moisture conditions change
significantly during the moving window time period, adding additional
over focus pixels. Note the different axes scale for the Amazon series.
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information to themeasurements. Future work is needed to investigate
whether such variations can improve the quality of MT-DCA retrievals
for other satellites such as SMOS and SMAP, whosemore frequent revis-
it time is likely to lead to improved performance of MT-DCA. Another
limitation of the MT-DCA algorithm is that it cannot capture sudden
changes in VOD such as those that might be induced by fire or defores-
tation during the time when the moving window passes over the
destruction event. However, such an event may still be detectable
with some delay when there is a large change in VOD over a small
number of moving windows.

The proposed multi-temporal algorithm retrieves microwave
scattering albedo alongside VOD and soil dielectric constant rather
than requiring an a priori assumption on its value based on land cover
as is commonly done. This not only improves the quality of the VOD
and k retrievals, but also allows simultaneous retrieval of the effective
single-scattering albedo. Albedo is assumed to be constant in time,
consistentwith prior literature and the fact that it is strongly dependent
on canopy architecture.

Almost all existing studies of measured single scattering albedo or
effective scattering albedo have been based around results from
airborne or tower-based studies with limited spatial coverage. Du,
Kimball, Jones, and Member (2015) calculate empirical relationships
for albedo by using spaceborne AMSR-E observations, but it does so by
comparing to in situ data that will likely contain significant representa-
tiveness errors. Rahmoune, Ferrazzoli, Kerr, and Richaume (2013) use
multi-angular data from SMOS but is limited to forests. In this study,
we present the first global map of L-band albedo determined from
spaceborne observations. The retrieved values of single-scattering
albedo are low, but non-zero. The albedo is largest across land cover
conditions with significant woody components. The forested regions
in South America are found to have a lower albedo than those of the
Northern Hemisphere, consistent with Rahmoune et al. (2013). In
almost 95% of cases, the retrieved albedo value is lower than the value
that would have been assigned by the land cover-based parameteriza-
tion in the SMAP ATBD (O'Neill et al., 2012). There are large variations
in albedo even within a given land cover class, suggesting the common
assumption of a land-cover based albedo value is rather poor. Indeed,
for the closed shrublands, savannas, grasslands, croplands, and
cropland/natural vegetation mosaic classes, the variability of albedo
across land cover is larger than its average value. When LPRM is run
with albedo values retrieved from the MT-DCA, much of the difference
in dielectric constant retrievals disappears. Although it is difficult to
validate the retrievals in this paper, given the likely errors in prior
assumptions of albedo, the significant effect of albedo on k retrievals
suggests that the ability of MT-DCA applications to retrieve it alongside
other variables is a major advantage.

The new VOD estimates have temporal dynamics that are consistent
with precipitation and prolonged dry-downs, and both canopy water
retention and biomass drying and wilting processes are reflected in
the VOD retrievals. This confirms that VOD is a vegetation indicator
that can be complementary to well known visible infrared indices
such as NDVI and LAI. The MT-DCA Aquarius retrievals of VOD show
significantly less high-frequency temporal variability due to noise than
those from LPRM applied to Aquarius brightness temperature data. Ad-
ditionally, because of the fixed relationship between VOD and k as-
sumed by LPRM in the presence of noisy observations, LPRM retrievals
lead to unphysical predictions of negative VOD or invalid retrievals in
16% of cases. The MT-DCA does not suffer from this problem.

At higher frequencies, brightness temperatures are less sensitive
to soil moisture and have less penetration through the canopy than at
L-band. Nevertheless, retrieval algorithms using temporal snapshots
are still prone to measurement noise. Using a method with time series
such as the one proposed in this paper may also lead to some improve-
ments in VOD retrieval accuracy at C, X and Ku-bands. The VOD repre-
sents an integrated value over the canopy, weighted depending on the
rate of attenuation of the signal through the canopy. This attenuation
rate is dependent on both the frequency band of the measurement
and the canopy properties themselves. As a result, the canopy proper-
ties and height ranges that dominate the signal at a given frequency
band vary by location. This complicates interpretation of VOD data, as
water stress in both branches and leaves as well as canopy structure
(which affects the b-parameter) both vary with canopy height. Addi-
tional work is needed to better understand the effect of measurement
frequency on VOD retrievals and interpretation.

Overall, VOD estimates obtained using the proposed algorithm have
temporal dynamics that are generally consistent with precipitation and
prolonged dry-downs. Both canopywater retention and biomass drying
and wilting processes are reflected in the VOD retrievals. This suggests
optical-infrared indices such as NDVI and LAI, which are not directly
sensitive to vegetation water content, are a poor basis for VOD in soil
moisture retrieval algorithms. Indeed, other studies of VOD (Jones,
Jones, Kimball, & McDonald, 2011; Lawrence et al., 2014) have found
that the end-of-season VOD variability is distinct from the signal
found in optical-infrared vegetation indices. By contrast, a comparison
of MT-DCA VOD with collocated radar observations (σHV) shows there
is a strong relationship between the two microwave measures of vege-
tation. TheσHV is a better predictor of VOD thanRVI (Fig. 7). Thismay be
relevant to the design of multi-resolution active–passive vegetation
retrievals from upcoming SMAP data. SMAP plans to use Normalized
Difference Vegetation Index (NDVI) climatology from MODIS as ancil-
lary dataset for VOD in its baseline soil moisture retrieval algorithm.
With the proposed algorithm, SMAP independent VOD retrievals could
be used to improve SMAP soil moisture retrievals. This study further
suggests that cross-polarized backscatter signals, which will be
gathered at higher spatial resolution than radiometric measurements
by SMAP. The proposed method could be applied to SMOS and SMAP
L-band data to better quantify the contribution of the vegetation to
total emissivity and therefore improve soil moisture retrievals.
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