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Triple collocation (TC) can be used to validate observations of a continuous geophysical target variable when the
error-free true value is not known.However, aswe show in this study, naïve application of TC to categorical target
variables results in biased error estimates. The bias occurs because the categorical variable is usually bounded,
introducing correlations between the errors and the truth, violating TC's assumptions. We introduce Categorical
Triple Collocation (CTC), a variant of TC that relaxes these assumptions and may be applied to categorical target
variables. The method estimates the rankings of the three measurement systems for each category with respect
to their balanced accuracies (a binary-variable performance metric). As an example application, we estimate
performance rankings of landscape freeze/thaw (FT) observations derived from model soil temperatures, in-
situ station air temperatures and satellite-observed microwave brightness temperatures in Alberta and
Saskatchewan, Canada. While rankings vary spatially, in most locations the model-based FT product is ranked
the highest, followed by the satellite product and the in-situ air temperature product. These rankings are likely
due to a combination of differences in measurement errors between FT products, and differences in scale. They
illustrate the value in using a suite of different measurements as part of satellite FT validation, rather than simply
treating in-situ measurements as an error-free ‘truth’.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Categorical variables belong to one of a set of exhaustive, mutually-
exclusive categories, whichmay be ordered (in which case, the categor-
ical variable is ‘ordinal’) or unordered (‘nominal’). Formany geophysical
variables, it is convenient to consider the variable to be categorical
rather than continuous. Examples include land cover type (Friedl
et al., 2002), cloud presence/absence (Ackerman et al., 1998), wildfire
burned area status (Roy, Boschetti, Justice, & Ju, 2008) and landslide
occurrence (Metternicht, Hurni, & Gogu, 2005). Models, satellites and
in-situ observations (or “measurement systems”) are used to monitor
and understand these variables, but each system contains its own
errors. A common question is: which system has the best performance
ranking with respect to an appropriate validation metric (Entekhabi,
Reichle, Koster, & Crow, 2010)?

One measurement system is usually assumed a priori to be the
error-free “truth” system, with other systems judged in comparison.
However, the presence of inevitable errors in the “truth” system, along
with differences in support scale between systems, often make the
performance rankings dependent on the choice of the “truth” system,
an unsatisfactory outcome. Triple collocation (TC) is a technique
for estimating the root-mean-squared-errors (Stoffelen, 1998) and cor-
relation coefficients (McColl, Vogelzang, et al., 2014) of three measure-
ment systems with respect to the unknown true value of a continuous
target variable, without unrealistically treating any one system as
error-free. It has been used for estimating errors in measurements of a
wide range of continuous geophysical target variables, including sea
surface temperature (e.g., O’Carroll, Eyre, & Saunders, 2008), wind
speed and stress (e.g., Vogelzang, Stoffelen, Verhoef, & Figa-Saldaña,
2011), wave height (e.g., Janssen, Abdalla, Hersbach, & Bidlot, 2007),
precipitation (Alemohammad, McColl, Konings, Entekhabi, & Stoffelen,
2015; Roebeling, Wolters, Meirink, & Leijnse, 2012), fraction of
absorbed photosynthetically active radiation (D’Odorico et al., 2014),
leaf area index (Fang, Wei, Jiang, & Scipal, 2012) and soil moisture
(e.g., Draper et al., 2013; Miralles, Crow, & Cosh, 2010).

Applying triple collocation to categorical target variables, however,
poses unique challenges. Problems arise because categorical variables
are usually unordered and bounded. As we show in Section 2, these
differences mean that key assumptions in TC are violated, biasing TC
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error estimates. In Section 3, we describe a new approach – extending
thework of Parisi, Strino, Nadler, and Kluger (2014) – called Categorical
Triple Collocation (CTC) that relaxes the violated assumptions and
provides performance rankings for measurements of categorical vari-
ables. In Sections 4 and 5, we demonstrate its utility by applying it to
the problem of ranking the performances of model, in-situ and satellite
estimates of landscape freeze/thaw (FT) state.

2. Deficiencies of classical TC

Triple collocation is a commonly used technique for estimating the
mean-squared error MSE (Stoffelen, 1998) and correlation coefficient
r (McColl, Vogelzang, et al., 2014) of a measurement or model estimate
with respect to the unknown true value of the target variable. It requires
observations of the target variable from three collocated measurement
systems that are linearly related to the target variable. The error
model is given by

Xi ¼ αi þ βiT þ εi ð1Þ

where Xi (for i=1,2,3) are the observedmeasurements from the noisy
measurement systems, T is the unknown true value of the target
variable, εi is a zero-mean random error term and αi ,βi are calibration
parameters. Xi ,εi and T are all random variables. It is further assumed
that Var(εi) and Var(T) are fixed and do not vary in time. The same
assumption is not strictly required for E(T), although many TC studies
use climatological anomalies so that E(T) is approximately stationary.
The three measurement systems used in the analysis could be, for
example, a satellite retrieval, a model estimate and an in-situ observa-
tion of the target variable. To apply triple collocation, two additional
assumptions must be satisfied:

(R1) the random errors between different measurement systems
must be uncorrelated with each other (i.e., Cov(εi,εj)=0, i≠ j).
(R2) the random errors must not be state-dependent and must be
uncorrelated with the target variable (i.e., Cov(εi,T)=0).

Classical TC suffers from several deficiencies when applied to
categorical variables, arising from the facts that they may be unordered
and/or strongly bounded. First, the additive, zero-mean error model
implicitly imposes an ordering and is inappropriate for nominal
(i.e., unordered) categorical variables. Second, even if we only consider
ordinal (i.e., ordered) variables, the distribution of εi must depend on T
to ensure that Xi does not take on values outside the bounded domain.
This dependence violates (R2) and becomes more significant as
the number of possible values the categorical variable may take
on (i.e., the size of its support) decreases. Consider the case of
binary variables, which only have two elements in their support
(i.e., Xi ,T∈ {−1,1}). As shown in Appendix A, this limited support
induces non-negligible correlations between the errors and target
variable such that (R1) and (R2) are always strongly violated for the
binary case. In particular, defining Pi to be the probability of an error
occurring in measurement system i, we have

Cov εi; Tð Þ ¼ −2Pi ð2Þ

Cov εi; ε j
� � ¼ 4PiP jVar Tð Þ ð3Þ

which are non-zero for all non-trivial cases where PiN0 ,PjN0 and
Var(T)N0. The observation that Cov(εi,T)b0 for categorical data has
been widely noted in the econometrics literature in terms of ‘mean
reversion’: errors tend to be biased towards the mean (e.g., Kapteyn &
Ypma, 2007). The correlation between the errors and the truth then
induces correlations between errors in the different measurement sys-
tems. These violations of (R1) and (R2) result in biased triple collocation
error estimates.
3. Triple collocation for categorical variables

The flaws in classical TC when applied to categorical variables
motivate the development of a new approach that uses an error
model appropriate for unordered variables, and allows the errors and
truth to be correlated. In this section, we will introduce a variant of TC
for categorical variables that estimates performance rankings of three
measurement systems with respect to a binary validation metric, the
“balanced accuracy”

π ¼ 1
2

ψþ ηð Þ ð4Þ

where ψ is the measurement system sensitivity (i.e., the probability of
the measurement being correct when the truth T = 1) and η is the
measurement system specificity (i.e., the probability of the measure-
ment being correct when T = −1). Unlike the simple accuracy metric
μ (i.e., the probability of the measurement being correct over all
cases), π avoids overestimating the quality of performance of biased
classifiers on imbalanced datasets (E(T)≠0), while still reducing to μ
for balanced datasets. For example, consider a binary classifier which
is biased, in that it always returns a classification of 1. If T is almost
always 1, the biased classifier may still receive a high simple accuracy,
even though it has no real predictive skill. In contrast, the balanced
accuracy will more heavily penalize the classifier for the rare occur-
rences where T=−1 and the classification is incorrect. It is impossible
to derive the actual balanced accuracy for each measurement
system but, as will be shown, our approach allows calculation of a
quantity that is proportional to the balanced accuracy for eachmeasure-
ment system. The relative sizes of this quantity between the three
measurement systems can be used to determine relative performance
rankings.

To handle unordered variables, instead of the linear regression
framework adopted in classical TC, we use a classification frame-
work. For each measurement system i and category k, define a binary
classifier

Xk
i Tk
� �

¼ Tk þ εki ð5Þ

where

Tk ¼ 1; if the true value belongs to class k
−1; otherwise

�
ð6Þ

and

Xk
i ¼

1; if the measured value belongs to class k
−1; otherwise

�
ð7Þ

with ε ik∈{−2,0,2}, and dependent on the value of Tk to ensure that Xi
k

does not take on a value outside the set {−1,1}.Wemay then assess the
performance of the measurement system separately for each category.
For instance, saywe are validating a landcover type categorical variable,
with the categories ‘grassland’, ‘forest’, ‘desert’ and ‘other’. We can treat
this as four different binary classification problems: ‘grassland’ vs ‘not
grassland’, ‘forest’ vs ‘not forest’, ‘desert’ vs ‘not desert’ and ‘other’ vs
‘not other’. Thiswill result in four separate rankings for the four different
categories. As a consequence, for example, the measurement system
that is ranked the highest for ‘grassland’ may be ranked the lowest for
‘desert’. There is no single, obviousway to combine these different rank-
ings into a single ranking across categories. This is a general problem
common to all categorical classification techniques. Hence, the problem
of validating general categorical variables reduces to that of validating
binary variables; we now drop the k superscript in our notation for
convenience.
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To allow the errors and truth to be correlated, we must relax the
assumption in our previous error model (1) that E(εi)=0, since this
will now also depend on T. As shown in Appendix B, in general,

E εið Þ ¼ 2 1−ηi
� �

pT T ¼ −1ð Þ−2 1−ψið ÞpT T ¼ 1ð Þ ð8Þ

where ψi= Pr(Xi=T |T=1) is the sensitivity and ηi= Pr(Xi=T |T=
−1) is the specificity.

Another important difference with the classical TC error model is
that Var(T) cannot be assumed to be fixed in time and independent of
E(T). Indeed, Var(T) is directly determined by E(T), and will vary in
time if E(T) varies in time: for a time-varying binary target variable,
E(T | t)=2p(t)−1 and Var(T | t)=4p(t)(1−p(t)) where p(t)≡pT(T=
1| t) and t is time.

Building on a recent method (Parisi et al., 2014, hereafter P14), we
propose a variant of TC (Categorical Triple Collocation, or CTC) that is
valid for this model and, crucially, does not violate its assumptions
when applied to categorical variables. The assumptions (R1) and (R2)
are replaced with the following assumption:

(R1*) the random errors between different measurement systems
must be conditionally independent (Pr(εi,εj |T)= Pr(εi |T)Pr(εj |T),
for all i≠ j).

This is a less restrictive assumption than those required in classical
TC, since the errors may now be dependent on T.

3.1. Stationary case (Parisi et al., 2014)

First, we review the approach given in P14, which is valid for
stationary variables. In their derivation, apart from (R1*), they further
Fig. 1. Schematic of the differentmodels of the truth T(t) used in classical TC, P14, and CTC,wher
is assumed constant and independent of the truemean E(T|t), whichmay be constant (a), e.g., w
applied directly to time series. When T(t) is a binary variable (bottom row), Var(T|t) is directly
E(T|t) and Var(T|t) black). The dependence arises because they are both functions of p(t)= Pr(
in geophysical applications, p(t) often varies in time, e.g., seasonally (d), implying that E(T|t) an
time-varying case (d).
require stationarity: that is, p(t), E(T) and Var(T) are all constant in
time (Fig. 1c). From these assumptions, they show that

Qij ≡ Cov Xi;X j
� � ¼ 1−E Xið Þ2; for i ¼ j

Var Tð Þ 2πi−1ð Þ 2π j−1
� �

; otherwise

�
ð9Þ

(equivalent to P14's Eq. (5)), where πi is the balanced accuracy of the ith
system. P14 consider a general problem involving M classifiers. For the
special case relevant to triple collocation (M = 3), we have four
unknowns (π1 ,π2 ,π3 and E(p(t)); note that E(Xi) can be estimated
from the data), and six unique terms in the 3×3 covariancematrix esti-
mate (Q11,Q12,Q13,Q22,Q23,Q33). However, only three of these terms
(Q12,Q13,Q23) can be expressed as equations in terms of the unknowns.
Therefore, we have three equations and four unknowns, the system
is underdetermined and there is no unique solution. However, if we
define the change of variable vi ¼ ð2πi−1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðTÞp
, we can rewrite

the system as

Qij ≡ Cov Xi;X j
� � ¼ 1−E Xið Þ2; for i ¼ j

viv j; otherwise

�
ð10Þ

There are now three equations and three unknowns (v1 ,v2 ,v3), so v
is exactly determined, and can be shown to be

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q12Q13

Q23

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q12Q23

Q13

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q23Q13

Q12

s

2
66666666664

3
77777777775

ð11Þ
e t is time. In classical TC, the variables are continuous (top row). The true variance Var(T|t)
hen TC is applied to climatological anomalies. Itmay also vary in time (b), e.g., when TC is
determined by E(T|t) (this dependence is represented in the schematic by coloring both

T=1|t). P14 provide a TC-variant for the case where p(t) is constant in time (c). However,
d Var(T|t) also vary seasonally. CTC is a generalization of the approach of P14 to the binary,
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Since vi is a monotonic increasing function of πi, sorting v yields the
measurement system rankings in terms of balanced accuracy (except in
the degenerate cases where p(t)=0 or p(t)=1 for all t; or πi=0.5 for
any i). For instance, if we have v2Nv1Nv3, then measurement system 2
displays the best performance, followed by system 1 and system 3,
which displays the poorest performance. The equations make intuitive
sense by rewarding system i when it covaries strongly with systems j
and k, and rewarding it even more so when systems j and k do not
covary with each other much. By replacing (R1) and (R2) with the less
restrictive (R1*), however, we pay the price of only obtaining rankings
of the measurement systems in terms of a validation metric, rather
than absolute values of the metric itself. Our simpler derivation of v
is fully equivalent to that given in P14 (where v is defined as the eigen-
vector of a rank-one matrix R with identical off-diagonal elements to
those of Q). The simpler exposition is possible for the M = 3 case that
we consider because the number of unknowns (M = 3) equals the
number of equations available (i.e., half the number of off-diagonal
terms in the covariance matrix, M(M-1)/2 = 3), resulting in an exact
solution (Eq. (11)) not possible for M N 3, where the problem is
overdetermined.

3.2. Non-stationary case (CTC)

In geophysical applications, the samples are often time series
that contain significant seasonal variation, and are consequently not
identically-distributed: that is, p(t), E(T |t) and Var(T |t) all vary signifi-
cantly in time (Fig. 1d). This means the relationship between the
observed covariances and balanced accuracies derived in P14 (Eq. (9))
is now changing in time, appearing to pose a problem for obtaining a
single set of rankings across time. In Appendix C, we relax the assump-
tion of stationarity made in P14 to derive a more general version of
Eq. (9):

Qij ≡ Cov Xi;X j
� �

¼ 1−E E Xijtð Þð Þ2; for i ¼ j
4E p tð Þð Þ 1−E p tð Þð Þð Þ 2πi−1ð Þ 2π j−1

� �
; otherwise

�
ð12Þ

As expected, Eq. (12) reduces to Eq. (9) when p(t) is constant
in time. Remarkably, relaxing the assumption of stationarity used in
P14 only affects the constant of proportionality between the covari-
ances and the balanced accuracies. Following a similar approach
as before, if we define the (different) change of variablewi ¼ 2ð2πi−1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðpðtÞÞð1−EðpðtÞÞÞp

, we can rewrite the system as

Qij ≡ Cov Xi;X j
� � ¼ 1−E E Xijtð Þð Þ2; for i ¼ j

wiwj; otherwise

�
ð13Þ
Fig. 2. Application of CTC to a synthetic example. In this example, p(t) follows a seasonal cycle
seasonally-varying binary random-variable is used as the synthetic truth T (top left grid: bottom
observations from three different measurement systems (X1, X2, X3) with prescribed balanced
series (top left grid: top three rows). The three-step CTC procedure is followed to estimate ra
data: 1) The sample covariance matrix Q is estimated from X1, X2, X3 (top right) 2) Eq. (14)
rankings (bottom right). The estimated CTC ranking correctly reflects the (unknown) differenc
which can be solved for w, to obtain

w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q12Q13

Q23

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q12Q23

Q13

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q23Q13

Q12

s

2
66666666664

3
77777777775
¼ v ð14Þ

We have identified a solution for the non-stationary case, and this
solution turns out to be identical to the solution for the stationary
case! This is a surprising result given our initial expectations that non-
stationarity should pose problems for obtaining a solution. Hence, we
have generalized this approach to a wider class of problems compared
to those shown in P14. In particular, we have shown that it can be
applied to non-stationary geophysical variables and can be considered
a form of triple collocation for categorical variables. Fig. 1 summarizes
some of the similarities and differences between CTC, P14 and classical
TC.

CTC can be summarized in three steps:

1. Calculate the sample 3×3 covariancematrixQ from the observations
X1 ,X2 ,X3.

2. Use Q and Eq. (14) to estimate w.
3. Sortw (in descending order) to obtain rankings.

3.3. Simulation studies

A synthetic example is used to illustrate the application of CTC
(Fig. 2). In this example, the geophysical binary variable follows an
annual cycle similar to that of landscape freeze/thaw state, the variable
of interest in the next section. Very early and very late in the year
(i.e., during the boreal winter), p(t) ~1 and it is therefore highly likely
that T = 1 (i.e., the landscape is frozen) during these periods. During
the middle of the year (i.e., the boreal summer), p(t) ~0 and it
is therefore highly likely that T = −1 (i.e., thawed) during this time.
As p(t) transitions between these two deterministic end-points, T
shows greater random variability, peaking at p(t) = 0.5 (around boreal
spring and fall). For the synthetic example in Fig. 2, a single, 52-week
realization of the seasonally-varying binary random-variable is used as
the synthetic truth T. Observations from three measurement systems
(for instance, a satellite, a model, and an in-situ station) with
conditionally-independent errors are simulated by inserting errors in
the synthetic truth series. More specifically, for measurement system
1, errors are randomly inserted such that the sensitivity ψ1= Pr(X1=
T |T=1)=0.8, the specificity η1= Pr(X1=T |T=−1)=0.6 and the
over one year (bottom left), where t is time (weeks). A single, 52-week realization of the
row, where values of 1 and−1 are colored blue and light brown, respectively). Synthetic
accuracies (π1=0.7, π2=0.8, π3=0.93) are generated by inserting errors into the truth

nkings for the three systems with respect to their balanced accuracies from the synthetic
is used to estimate w (middle right) 3) the order of terms in w is used to determine the
es in balanced accuracy.
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balanced accuracy is therefore π1 ¼ 1
2 ðψ1 þ η1Þ ¼ 0:7 (by definition in

Eq. (4)). For measurement system 2, ψ2=0.9, η2=0.7 and therefore
π2=0.8; and formeasurement system3,ψ3=0.98, η3=0.88 and there-
fore π3=0.93. Therefore, in this synthetic example, system 3 displays
the best performance with respect to the balanced accuracy metric,
followed by system 2, with system 1 displaying the poorest perfor-
mance. This is evident in Fig. 2, where X3 is almost identical to T, in
contrast toX1, which is substantially different to T. CTC is able to identify
the correct performance ranking of the three measurement systems in
this case, without access to the truth T (Fig. 2).

CTC relies on an estimate of the covariance matrix Q from a finite
sample. For small sample sizes, the sample estimate of Q may be noisy
and result in incorrect CTC performance rankings. Furthermore, if
measurement systems with very low skill are used in a CTC analysis,
some elements of Q may be very small and thus more susceptible to
noise (for the limiting case with π1=π2=π3=0.5, the off-diagonal
terms of Q in Eq. (12) are all zero and CTC is degenerate). To gain
some understanding of these effects on CTC performance rankings,
sensitivity tests are performed using the example presented in Fig. 2
as a reference case (Fig. 3). In the first scenario, the balanced accuracy
of the highest-performingmeasurement system (system3) is systemat-
ically increased from its reference value (π3=0.93), and the sample size
is increased from one to ten years (with the same seasonally-varying
p(t) relationship used for each subsequent year as that used in Fig. 2).
For each case, 500 replicates of the truth T are sampled. Each replicate
is used to generate synthetic observations from three measurement
systems, with randomly-assigned errors but fixed balanced accuracies.
CTC is used to estimate the rankings of the three systems, as in the
reference case, for each replicate. Due to sampling errors, for some
replicates, CTC does not identify the correct ranking. We summarize
the frequency with which this occurs by calculating, for each case, the
proportion of replicates in which CTC correctly identifies the highest-
ranked measurement system (Fig. 3, left). In all cases, in this scenario,
CTC does much better at identifying the highest-ranked measurement
system than random guessing (corresponding to a probability of 0.33,
the lowest value in the colorbar in Fig. 3). As expected, CTC sampling
error decreases as sample sizes increase, with CTC almost always cor-
rectly identifying the highest-ranked measurement system when ten
years of weekly observations are used. CTC is also less vulnerable to
sampling error as π3 increases. This makes intuitive sense: it is easier
to identify the best system when it is much better than its competitors,
and more difficult when they are all similar.

In the second scenario (Fig. 3, right), the lowest-ranked system in
the reference case (system 1) is changed so that π1=0.51. This
Fig. 3.Probability of CTC correctly identifying the highest-rankedmeasurement system, for varyi
measurement systems displaymoderate to highbalanced accuracies. As the balanced accuracy o
probability of CTC correctly identifying the highest-rankedmeasurement system increases. In sc
struggles to identify the highest-ranked measurement system, even for large sample sizes.
simulates the inclusion of a very poor measurement system in a CTC
analysis, with predictive skill only marginally better than random
guessing. In this scenario, the CTC solution is very close to degenerate,
and the small elements of Q are easily overwhelmed by even small
levels of noise due to sampling error. As such, CTC is unable to perform
better than random guessing for this near-degenerate case, even with
large sample sizes or large values for π3. Therefore, as expected, using
low-skill measurement systems as inputs will result in low-accuracy
performance rankings from CTC.

4. Example application: validating landscape freeze/thaw state

We apply CTC to the validation of an important categorical geophys-
ical variable: landscape freeze/thaw (FT) state. The landscape FT state
across boreal regions has important regional and global environmental
implications. It modulates the partitioning of land-surface energy fluxes
and, consequently, the state of the atmospheric column and regional
weather patterns (Betts, Viterbo, Beljaars, & van denHurk, 2001). Global-
ly, the timing of FT transitions bounds the growing season for vegetation,
with important implications for exchanges of carbon between the land
and atmosphere in a changing climate (Goulden et al., 1998).

Monitoring landscape FT state globally is difficult because it requires
knowledge of the state of soil, snow and vegetation over a vast region,
including remote areas that are difficult to access. Low-frequency radar
and radiometer observations from satellites offer a promising means
for monitoring landscape FT globally, since the FT state has a strong
impact on water permittivity and hence microwave scattering and
emission from the soil and vegetation (Way et al., 1990; Wegmüller,
1990). Satellite measurements at L-band from the NASA Soil Moisture
Active Passive (SMAP; Dunbar et al., 2015; Entekhabi, Njoku, et al.,
2010) and ESA Soil Moisture and Ocean Salinity (SMOS; Rautiainen
et al., in press) mission provide regular retrievals of soil moisture and
FT state. It is necessary to characterize FT product errors for satellite val-
idation purposes, and so that the FT observations may be assimilated
into land-surfacemodels (Farhadi, Reichle, De Lannoy, & Kimball, 2014).

Binary retrievals of FT state from satellitemeasurements are difficult
to validate, because unlike variables such as soil moisture, ‘freeze’ and
‘thaw’ states are not measured directly in-situ; rather, they must be
inferred from in-situ observations of air and/or soil temperatures. The
influence of vegetation and snow cover (particularly wet snow) on
radar and radiometer measurements must also be considered. In
previous studies, satellite FT estimateswere generally validated by com-
parison with meteorological station observations or model outputs of
continuous proxies such as air temperature or soil temperature
ng sample sizes andmeasurement systembalanced accuracies. In scenario 1 (left), all three
f thehighest-ranked system (system3) is increased and/or the sample size is increased, the
enario 2 (right), measurement system 1 has a very low balanced accuracy. As a result, CTC
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(Rignot et al., 1994; Rignot & Way, 1994; Way, Zimmermann, Rignot,
McDonald, & Oren, 1997). These continuous measurements can
also be thresholded into FT states and quantitatively compared in
binary space, usually in terms of classification accuracy μ i (Colliander
et al., 2012; Kim, Kimball, McDonald, & Glassy, 2011; Podest,
McDonald, & Kimball, 2014; Zwieback, Bartsch, Melzer, & Wagner,
2012) or sensitivity ψi (Zhang, Armstrong, & Smith, 2003). This
approach assumes that only the satellite product contains errors.
However, air- and even soil-temperatures are only indirectly related
to landscape FT state, particularly during the transition seasons, so FT
products generated from these proxies will inevitably contain their
own errors. In addition, spatial representativeness errors induced from
point versus area comparisons also adversely influence confidence in
deriving FT ‘truth’ from in-situ measurements.

4.1. Data

As a proof of concept, we apply CTC to assess the relative
performance of three FT products at 33 study sites located across
Saskatchewan and Alberta, Canada over the period August 28, 2011–
May 25, 2014. The “old black spruce” Boreal Ecosystem Research and
Monitoring Site (BERMS) is located in the southern boreal forest in
central Saskatchewan. It is flat and homogeneously covered by black
spruce forest with soil organic layers 20–30 cm deep (Gower et al.,
1997). The 32 other stations are part of a large network maintained by
Alberta Agriculture and Rural Development, AgroClimatic Information
Service (ACIS, http://agriculture.alberta.ca/acis/) and are situated in
open prairie locations.

The first type of FT estimates are derived from in-situ station air
temperature measurements (Ta) at each of the 33 stations according to

X1 ¼ 1; if Ta ≤ 0�C
−1; if Ta N 0 �C

�
ð15Þ

Air temperature is routinely measured at weather and micrometeo-
rological stations. While soil temperature measurements could also be
used to determine the FT state, air temperature has been widely used
for FT validation (e.g., Kim, Kimball, Zhang, & McDonald, 2012) and
serves as a proxy for wet snow in spring (which is important for the
satellite derived FT estimates described next). The use of air tempera-
ture also mitigates uncertainty in the spatial representativeness of
point soil moisture and temperature measurements due to the high
degree of local scale variability (Famiglietti, Ryu, Berg, Rodell, &
Jackson, 2008). Furthermore, soil temperature is not available at most
weather stations. We only consider early morning (~6 am) measure-
ments where the soil and overlying air are likely in an isothermal state.

The second type of FT estimates are obtained from passive micro-
wave satellite observations. Launched in June 2011, the NASA/SAC-D
Aquarius satellite provides collocated active (scatterometer) and
passive (radiometer) L-band observations of the Earth's surface at
three incidence angles: 29.2°, 38.4° and 46.3° (Le Vine, Lagerloef,
Colomb, Yueh, & Pellerano, 2007). It has a repeat time of seven days,
crossing the equator twice daily, and an average footprint size of
approximately 100 km.While its principal aim is to retrieve sea surface
salinity, Aquarius observations have demonstrated utility for estimating
large-scale land-surface properties (McColl, Entekhabi and Piles, 2014),
including FT state (Brucker, Dinnat, & Koenig, 2014; Roy et al., in press).
In this study, we use a weekly, gridded Aquarius radiometer brightness
temperature product (Brucker et al., 2014), using beam 2 (38.4°
incidence angle; 84 km × 120 km resolution), which is closest to the
SMAP incidence angle of 40°. To obtain a FT estimate, we first define a
normalized polarization ratio (Choudhury, 1989)

NPR ¼ TBV−TBH

TBV þ TBH
ð16Þ
where TBV and TBH are the vertically- and horizontally-polarized bright-
ness temperatures (K) measured by the Aquarius radiometer for the
descending (~6 am) overpass. We then define the relative frost factor
(Roy et al., in press)

F Frel tð Þ ¼ NPR tð Þ−NPRfrozen

NPRthawed−NPRfrozen
ð17Þ

where NPRfrozen is approximated by the mean of the five lowest winter
(January and February)NPR values over the study period; andNPRthawed

by the mean of the five highest summer (July and August) NPR values
over the study period. The FT prediction X1 is then given by (Roy et al.,
in press)

X2 ¼ 1; if F Frel tð Þ≤Δ
−1; if F Frel tð ÞNΔ

�
ð18Þ

where X1=1 means ‘frozen’ and X1=−1 means ‘thawed’. The thresh-
old parameter Δ can be fixed at 0.5 or optimized as described in Kim
et al. (2012); in this study, we use the optimized values of 0.46 for
BERMS and 0.39 for the prairie sites, determined in a previous study
(Roy et al., in press). The seasonal threshold approach is similar to the
SMAP baseline FT algorithm (Dunbar et al., 2015). Satellite observations
must be considered as measurements of only the upper soil layer FT
state, and will also contain contributions from vegetation and interac-
tions with snow (Roy et al., in press).

Finally, a third FT estimate is obtained from soil temperatures (Ts)
from the Canadian Meteorological Centre (CMC) surface analysis
(Bélair, Brown, Mailhot, Bilodeau, & Crevier, 2003; Bélair, Crevier,
Mailhot, Bilodeau, & Delage, 2003) according to

X3 ¼ 1; if Ts ≤0�C
−1; if TsN0�C

�
ð19Þ

While this product is an analysis that includes station air-
temperatures (in addition to a land surface model), it is independent
of the stations described previously, which are from research sites.
The model's spatial resolution is 0.22° (Bélair, Crevier, et al., 2003).

Example time series of FFrel, Ta and Ts and their corresponding FT
products are shown in Fig. 4 for the BERMS site in Saskatchewan. Each
product follows a strong seasonal cycle, and suggests that the proposed
data model (Fig. 1d) is a reasonable choice for these data. In particular,
the variance of each product appears to approach zero during winter/
summer, and reach a maximum during the spring/autumn transition
periods. Similar seasonal cycles are observed at the other sites used in
this study (not shown).

The three datasets were temporally- and spatially-collocated at each
site, using nearest-neighbor sampling for the spatial collocation, and the
in-situ air temperatures as the temporal reference with a maximum
temporal collocation window of 1 day. This procedure resulted in
between 123 and 144 sample triplets, depending on the site (because
of gaps in the Aquarius or in-situ data). CTC was applied to the sample
triplets at each site to obtain performance rankings. We performed
bootstrapping (Efron & Tibshirani, 1994) usingM (= 1000) replicates,
to quantify the impact of sampling error on the estimated rankings.
Briefly, for a given site with N sample triplets, N sample triplets are
randomly drawn from the N available samples with replacement. CTC
is then performed on this bootstrapped sample, and the process is
repeated M times, producing M performance rankings for the site. If
sampling error is small, the CTC performance rankings will be mostly
consistent across the M replicates; if the sample size is too small and
sampling error is larger, the M performance rankings will be more
variable.

http://agriculture.alberta.ca/acis/


Fig. 4. Time series (points) at BERMS of relative frost factors obtained from Aquarius (top), in-situ station air temperatures Ta (middle) and CMC surface analysis soil temperatures Ts
(bottom), with corresponding 4-week moving averages and FT thresholds. Boxes above the time series plots show the inferred FT state for each measurement system, where light
brown, blue and white boxes signify thawed, frozen and missing data, respectively.

Fig. 5.Map of the measurement system ranked first at each site using CTC. Since the top-rankedmeasurement systemmay vary across theM (= 1000) bootstrap replicates at any given
site, we calculate the proportion of bootstrap replicates ranking the satellite, in-situ and surface analysismeasurements first, andmap these to a red–green–blue color space, respectively.
For example, if the satellite is ranked the highest in all 1000 bootstrapped performance rankings at a site, it is colored red; if the satellite is ranked first in 50% of the bootstrapped rankings,
and the surface analysis is ranked first in the other 50%, it is colored purple.
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5. Results and discussion

Fig. 5 maps the measurement systems with the highest CTC perfor-
mance ranking at each site. The CMC surface analysis is confidently
ranked the highest at most sites, including the forested site at BERMS
(the easternmost site in Fig. 5). However, at several sites in southeastern
Alberta, the in-situ measurements are ranked the highest. The satellite
retrievals are confidently ranked second at almost all sites, although
the in-situ measurements are ranked second at the forested BERMS
site (Fig. 6). Finally, the in-situ air temperature measurements are
ranked third at most sites (Fig. 7), although the surface analysis is
ranked third at several sites in southeastern Alberta; and at BERMS,
the satellite is ranked third (with considerable uncertainty).

Overall, while there is some variability across sites, at most sites,
the surface analysis is ranked first, the satellite second, and the in-situ
air temperature product third. These results can be explained by a
combination of factors. First, the ranking is likely partly a function of
the different scales of the FT measurements (~1° for the satellite prod-
uct, 0.22° for themodel product, and point-scale for the in-situ product).
Therefore, so-called representativeness errors will be significant, partic-
ularly for the in-situ product (Miralles et al., 2010) and, to a lesser
extent, the satellite product (Gruber et al., in press). Indeed, if there is
significant heterogeneity in the FT field, the top ranking of the surface
analysis could be explained entirely by its intermediate scale between
those of the satellite and in-situ products: as noted earlier, CTC rewards
product i for covarying with products j and k, and even more so if
products j and k covary little.

Second, the ranking is likely also due to differences in measurement
accuracy of the different products. The fact that the satellite measure-
ments are generally not ranked first is consistent with the multiple
sources of uncertaintywith respect to surface influences on permittivity
(snow, vegetation and soil) and hence the brightness temperature time
series: for example, the dense forest at BERMS, crop growth over the
prairie sites, topography, and/or the presence of subgrid wetlands
or waterbodies (Du et al., 2014; Podest et al., 2014). And while
Fig. 6. Similar to Fig. 5 for the measurement sys
representativeness errors are undoubtedly an important factor in the
low ranking of the in-situ station product, even point measurements
of air temperature contain information about air temperatures across
a much wider region (this would not be true for soil temperatures,
which are highly variable at small scales). Hence, perhaps the use of sta-
tion air temperatures rather than soil temperatures introduces signifi-
cant errors into the in-situ product, beyond representativeness errors.
For instance, during spring, there can be a pronounced time lag between
snowmelt onset and soil temperature response (i.e., air temperatures
rise above freezing, the snow begins to melt but the soil remains
frozen). Roy et al. (in press) show a spread of up to four weeks in the
estimate of spring thaw onset from soil temperature, air temperature
and satellite-derived land surface temperature datasets.

Our analysis is subject to several limitations. While the sample sizes
used are comparable with many other published TC studies, sampling
error is large enough to obscure complete performance rankings at
some sites (for instance, it is unclear which system is ranked third at
BERMS). This problem is not unique to CTC, and would apply to any
attempt to validate the available satellite FT estimates, for instance, by
calculating the accuracy relative to stationmeasurements. The available
sample sizewill increase as the L-band satellite record grows, and as the
frequency of observations increases in future satellite missions (from
Aquarius's 7-day repeat time to SMAP's 3-day repeat time). Sampling
issues could be mitigated in future validation studies by conducting
CTC on spatial samples, rather than temporal samples; such an analysis
would require the in-situ station measurements to be replaced with
another product with greater spatial coverage, for instance, a higher-
frequency radar product. Some of the standard problems of TC may
also apply. A previous study has shown that the assumptions of classical
TC are often violated when applied to soil moisture (Yilmaz & Crow,
2014). It is possible that (R1*) is violated in our analysis, for example,
due to representativeness errors (Stoffelen, 1998; Vogelzang et al.,
2011), although we note that (R1*) is a substantially weaker assump-
tion than (R1) and (R2), and thus less likely to be violated in general.
Furthermore, CTC is inherentlymore robust to violations of assumptions
tem ranked second at each site using CTC.



Fig. 7. Similar to Fig. 5 for the measurement system ranked third at each site using CTC.
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compared to classical TC since it estimates performance rankings, rather
than absolute values of performance metrics: estimates of w (Eq. (14))
may be biased but still lead to the correct ranking.

6. Conclusions

Classical TC is limited to continuous variables and measurement
system triplets that have uncorrelated errors and errors independent
of the state variable. In this study, we show that, when TC is applied to
categorical variables, both assumptions are automatically violated. We
introduce CTC, a variant of TC that is compatible with categorical vari-
ables. Application of CTC allows relative ranking of three measurement
systems in proportion to their balanced accuracies. As an example appli-
cation, CTC is applied to estimate performance rankings of FT estimates
generated from point in-situ air temperatures, a normalized polariza-
tion ratio from passive L-band satellite observations, and soil tempera-
tures from an atmospheric model analysis.

CTC analyses can be viewed as complementary to traditional valida-
tion studies that treat a measurement system as error-free (e.g., in-situ
data). While CTC can only provide performance rankings, not error
magnitudes, it can be used to identify the most accurate measurement
system at a particular location, which can then be used as the error-
free “truth” system in a traditional error characterization study to obtain
estimates of error magnitudes. Our results indicate that, for at least
some regions, it may be more appropriate to characterize satellite FT
errors by comparison with a combination of model-based and in-situ
FT estimates, rather than those based solely on in-situ air temperatures.

Some of the problems identified here with applying classical TC to
categorical variables also apply to bounded continuous variables, such
as soil moisture. While the impacts will be minimal for soil moisture
values away from the boundaries, classical TC should be applied with
caution in very dry (wet) regions where soil moisture is frequently
near its lower (upper) bound, where we expect strong violations of
(R1) and (R2).

Code is available for implementing CTC at https://github.com/kaighin.
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Appendix A. Inapplicability of classical TC for categorical variables

We show that naïve application of standard TC to binary target
variables will automatically result in the violation of both key error
assumptions. We begin with a standard error model used in triple
collocation:

Xi ¼ T þ εi ðA1Þ

Without loss of generality, we choose Xi ,T∈{−1,1} (i.e., the result
of this derivation is independent of the labels used for the binary vari-
ables). We do not use the affine error model, since a linear relationship
between observations Xi and target variable t is inappropriate in the
binary case. This error model requires that E(εi)=0, so the error distri-
bution must have the form

pEi εið Þ ¼

1
2
Pi; for εi ¼ 2

1−Pi; for εi ¼ 0
1
2
Pi; for εi ¼ −2

8>>><
>>>:

; ðA2Þ

where pEi is the error probabilitymass function (PMF) and Pi is a param-
eter such that the probability of an error occurring for measurement
system i is Pi.

https://github.com/kaighin
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First, we show that assumption (R2) is violated, i.e., Cov(εi,T)≠0.
When T=1, εi must equal either 0 or -2 to produce Xi∈ {−1,1};
similarly, when T=−1, εi must equal either 0 or 2. Therefore, the
PMF of Tεi can be written as

pTEi Tεið Þ ¼ Pi; for Tεi ¼ −2
1−Pi; for Tεi ¼ 0

�
; ðA3Þ

Therefore, E(Tεi)=−2Pi, so Cov(εi,T)=E(Tεi)−E(T)E(εi)=−2Pi,
since E(εi)=0. This is non-zero for all non-trivial cases in which PiN0.

Second, we show that assumption (R1) is violated, i.e., Cov(εi,εj)≠0
for i≠ j. By the law of total covariance, we have

Cov εi; ε j
� � ¼ E Cov εi; ε jjT

� �� �þ Cov E εijTð Þ;E ε jjT
� �� �

: ðA4Þ

Furthermore, by definition,

Cov εi; ε jjT
� � ¼ E εiε jjT

� �
−E εijTð ÞE ε jjT

� �
: ðA5Þ

The distribution of the product of the errors εiεj conditioned on T can
be written

pEiE j jT εiε jjT ¼ 1
� � ¼ pEiE j jT εiε jjT ¼ −1

� � ¼ PiP j; for εiε j ¼ 4
1−PiP j; for εiε j ¼ 0

�
ðA6Þ

Therefore, E(εiεj |T=1)=E(εiεj |T=−1)=4PiPj. The distribution of
the errors εi conditioned on T can be written as

pEi jT εijT ¼ 1ð Þ ¼ Pi; for εi ¼ −2
1−Pi; for εi ¼ 0

�
ðA7Þ

and

pEi jT εijT ¼ −1ð Þ ¼ Pi; for εi ¼ 2
1−Pi; for εi ¼ 0

�
ðA8Þ

Therefore, E(εi |T)=−2PiT and E(εi |T)E(εj |T)=4PiPj. Substituting
these results into Eq. (A5) and taking the expectation, we obtain

E Cov εi; ε jjT
� �� � ¼ E 4PiP j−4PiP j

� � ¼ 0; ðA9Þ

Also,

Cov E εijTð Þ; E ε jjT
� �� � ¼ Cov −2PiT;−2P jT

� �
¼ E 4PiP jT

2
� �

−4PiP jE Tð Þ2 ¼ 4PiP jVar Tð Þ: ðA10Þ

Therefore, substituting Eqs. (A9) and (A10) into Eq. (A4) yields
the result Cov(εi,εj)=4PiPjVar(T)N0 for all non-trivial cases where
PiN0,PjN0 and Var(T)N0.

Appendix B. Non-zero error means

It is shown in Appendix A that the assumption E(εi)=0 ensures that
the error distribution is symmetric and that E(εi |T)=−2PiT. Then, by
the law of total expectation, we have

0 ¼ E εið Þ ¼ E E εijTð Þð Þ ¼ E −2PiTð Þ ¼ −2PiE Tð Þ; ðB1Þ

so E(T)=0. Furthermore, it implies that E(Xi)=E(T)+E(εi)=0.
Now consider the more general case where εi need not have zero

mean. Then

pEi jT εijT ¼ 1ð Þ ¼ 1−ψi; for εi ¼ −2
ψi; for εi ¼ 0 :

�
ðB2Þ
and

pEi jT εijT ¼ −1ð Þ ¼ 1−ηi; for εi ¼ 2
ηi; for εi ¼ 0

�
ðB3Þ

Therefore E(εi |T=1)=−2(1−ψi), E(εi |T=−1)=2(1−ηi) and so

E εið Þ ¼ E E εijTð Þð Þ ¼ 2 1−ηi
� �

pT T ¼ −1ð Þ−2 1−ψið ÞpT T ¼ 1ð Þ
¼ 2 ψi þ ηi−2

� �
pT T ¼ 1ð Þ þ 1−ηi

� �
:

ðB4Þ

Appendix C. Generalization of P14 to time series

This result generalizes the relation between covariances and
balanced accuracies given in P14 to time series.

P14 show, for the stationary case, that

Cov Xi;X j
� � ¼ 1−E Xið Þ2; for i ¼ j

Var Tð Þ 2πi−1ð Þ 2π j−1
� �

; otherwise

�
ðC1Þ

We refer the reader to P14 for details of the derivation. For the non-
stationary case, Var(T) varies in time and hence across samples, so this
result only holds when conditioned on time t, i.e.,

Cov Xi;X jjt
� � ¼ 1−E Xijtð Þ2; for i ¼ j

4p tð Þ 1−p tð Þð Þ 2πi−1ð Þ 2π j−1
� �

; otherwise

�
ðC2Þ

since Var(T | t)=4p(t)(1−p(t)) where p(t)≡pT(T=1| t). We seek the
unconditional covariance Cov(Xi,Xj) for the non-stationary case. By the
law of total covariance,

Cov Xi;X j
� � ¼ E Cov Xi;X j

� �jt� �þ Cov E Xijtð Þ;E X jjt
� �� � ðC3Þ

Starting with the i= j case in Eq. (C2), we have

E Cov Xi;X j
� �jt� � ¼ 1−E E Xijtð Þ2

� �
ðC4Þ

and

Cov E Xijtð Þ; E X jjt
� �� � ¼ E E Xijtð Þ2

� �
−E E Xijtð Þð Þ2 ðC5Þ

by definition. Substituting Eqs. (C4) and (C5) into Eq. (C3) gives

Cov Xi;X j
� � ¼ 1−E E Xijtð Þð Þ2 ðC6Þ

Now we consider the case where i≠ j in Eq. (C2). First, note that

E Xijtð Þ ¼ E Tjtð Þ þ E εijtð Þ

¼ 2 ψi þ ηi−1
� �

p tð Þ þ 1−2ηi
ðC7Þ

obtained by combining the results that E(T|t)=2p(t)−1 (by definition)
and Eq. (B4).

Second, note that

E E Xijtð ÞE X jjt
� �� � ¼ 4 ψi þ ηi−1

� �
ψ j þ η j−1

� �
E p tð Þ2
� �

þ 2 ψi þ ηi−1
� �

1−2η j

� �
þ ψ j þ η j−1
� �

1−2ηi
� �� �

E p tð Þð Þ

þ 1−2ηi
� �

1−2η j

� �
ðC8Þ

using Eq. (C7).
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Similarly, we have

E E Xijtð Þð ÞE E X jjt
� �� � ¼ 4 ψi þ ηi−1

� �
ψ j þ η j−1

� �
E p tð Þð Þ2

þ 2 ψi þ ηi−1
� �

1−2η j

� �
þ ψ j þ η j−1
� �

1−2ηi
� �� �

E p tð Þð Þ

þ 1−2ηi
� �

1−2η j

� �
ðC9Þ

Therefore, using Eqs. (C8) and (C9), we have

Cov E Xijtð Þ;E X jjt
� �� � ¼ E E Xijtð ÞE X jjt

� �� �
−E E Xijtð Þð ÞE E X jjt

� �� �
¼ 4 E p tð Þ2

� �
−E p tð Þð Þ2

� �
ψi þ ηi−1
� �

ψ j þ η j−1
� �

¼ 4 E p tð Þ2
� �

−E p tð Þð Þ2
� �

2πi−1ð Þ 2π j−1
� �

ðC10Þ

Therefore, by substituting Eqs. (C2) and (C10) into Eq. (C3) and
rearranging, we obtain the unconditional covariance for the case
where i≠ j and have

Cov Xi;X j
� � ¼ 1−E E Xijtð Þð Þ2; for i ¼ j

4E p tð Þð Þ 1−E p tð Þð Þð Þ 2πi−1ð Þ 2π j−1
� �

; otherwise

�
ðC11Þ

Note that this reduces to Eq. (C1), the stationary case given in P14,
when T is not dependent on time t.
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