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Abstract Calibration and validation of geophysical measurement systems typically require knowledge of
the “true” value of the target variable. However, the data considered to represent the “true” values often
include their own measurement errors, biasing calibration, and validation results. Triple collocation (TC) can be
used to estimate the root-mean-square-error (RMSE), using observations from three mutually independent,
error-prone measurement systems. Here, we introduce Extended Triple Collocation (ETC): using exactly the
same assumptions as TC, we derive an additional performance metric, the correlation coefficient of the
measurement system with respect to the unknown target, ρt;Xi

. We demonstrate that ρ2t;Xi
is the scaled,

unbiased signal-to-noise ratio and provides a complementary perspective compared to the RMSE. We apply it
to three collocated wind data sets. Since ETC is as easy to implement as TC, requires no additional assumptions,
and provides an extra performance metric, it may be of interest in a wide range of geophysical disciplines.

1. Introduction

Geophysical measurement systems, such as in-situ sensor networks, satellites, and models, require calibration
and validation. This requires comparison of their measurements with true observations of the target variable.
A range of performance metrics exist to summarize this comparison, including the root-mean-square-error
(RMSE) and correlation coefficient. No single metric can capture all relevant characteristics of the relationship
between the measurement system and the target, which may include, but are not limited to, the
measurement system’s bias, noise, and sensitivity with respect to the target variable [Entekhabi et al., 2010].

In practice, however, the data considered to represent the “true” observations are themselves imperfect due
to their own measurement errors and differences in support scale. Triple collocation (TC) is a technique
for estimating the unknown error standard deviations (or RMSEs) of three mutually independent
measurement systems, without treating any one system as perfectly observed “truth” [Stoffelen, 1998]. It
assumes a linear error model where errors are uncorrelated with each other and the target variable. TC
has been used widely in oceanography to estimate errors in measurements of sea surface temperature
[Gentemann, 2014; O’Carroll et al., 2008], wind speed and stress [Portabella and Stoffelen, 2009; Stoffelen, 1998;
Vogelzang et al., 2011], and wave height [Caires and Sterl, 2003; Janssen et al., 2007]. It has also been used
in hydrology to estimate errors in measurements of precipitation [Roebeling et al., 2012], fraction of absorbed
photosynthetically active radiation [D’Odorico et al., 2014], leaf area index [Fang et al., 2012], and, particularly,
soil moisture [Anderson et al., 2012; Dorigo et al., 2010; Draper et al., 2013; Hain et al., 2011;Miralles et al., 2010;
Parinussa et al., 2011; Scipal et al., 2008; Su et al., 2014]. It has been applied in data assimilation [Crow and van
den Berg, 2010] and can also be used to optimally rescale two measurement systems to a third reference
system [Stoffelen, 1998; Yilmaz and Crow, 2013].

While TC is a powerful approach for estimating one metric of measurement system performance (RMSE), a
suite of metrics are needed for calibration and validation. In this paper, we extend TC to also estimate the
correlation coefficient of each measurement system with respect to the unknown target variable. We call this
approach Extended Triple Collocation (ETC). ETC is simple to implement and adds no additional assumptions
or computational cost to TC. In section 2, we review TC and introduce ETC, deriving an equation for the

MCCOLL ET AL. ©2014. American Geophysical Union. All Rights Reserved. 6229

PUBLICATIONS
Geophysical Research Letters

RESEARCH LETTER
10.1002/2014GL061322

Key Points:
• Triple collocation is used to
estimate the MSE of measurement
system estimates

• We extend triple collocation to estimate
the correlation coefficient

• The new approach requires no
additional assumptions or
computational burden

Correspondence to:
K. A. McColl,
kmccoll@mit.edu

Citation:
McColl, K. A., J. Vogelzang, A. G. Konings,
D. Entekhabi, M. Piles, and A. Stoffelen
(2014), Extended triple collocation:
Estimating errors and correlation
coefficients with respect to an unknown
target, Geophys. Res. Lett., 41,
6229–6236, doi:10.1002/2014GL061322.

Received 25 JUL 2014
Accepted 13 AUG 2014
Accepted article online 16 AUG 2014
Published online 10 SEP 2014

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2014GL061322
http://dx.doi.org/10.1002/2014GL061322


correlation coefficient from the assumptions of TC alone. We show that the correlation coefficients
provide important insights into the fidelity of the measurement systems to the target variable beyond those
provided by the RMSE, combining information on the measurement system’s sensitivity and noise with
information on the strength of the target signal. In section 3, we present a collocated data set of ocean
surface wind measurements from buoys, satellite scatterometers, and a Numerical Weather Prediction (NWP)
forecast model and apply ETC to it in section 4.

2. Methods
2.1. Classical Triple Collocation

In this section, we review the derivation of the TC estimation equations. We begin with an affine error model
relating measurements to a (geophysical) variable, a standard form used in the triple collocation literature
[Zwieback et al., 2012]:

Xi ¼ X ’i þ εi ¼ αi þ βi t þ εi (1)

where the Xi (i ∈ {1, 2, 3}) are collocated measurement systems linearly related to the true underlying value t
with additive random errors εi, respectively. They could represent, for instance, outputs from a model, a
remotely sensed product, and point measurements from in-situ stations. Xi, X ’ i, εi and t are all random
variables. αi and βi are the ordinary least squares (OLS) intercepts and slopes, respectively.

The covariances between the different measurement systems are given by

Cov Xi; Xj
� � ¼ E XiXj

� �� E Xið ÞE Xj
� � ¼ βiβjσ

2
t þ βiCov t; εj

� �þ βjCov t; εið Þ þ Cov εi; εj
� �

(2)

where σ2t ¼ Var tð Þ. We assume that the errors from the independent sources have zero mean (E(εi) = 0) and
are uncorrelated with each other (Cov(εi, εj) = 0, i≠ j) and with t (Cov(εi, t) = 0). Using these assumptions, the
two middle terms on the right-hand side are zero, and so is the last when i≠ j, so the equation reduces to

Qij ≡ Cov Xi; Xj
� � ¼ βiβjσ

2
t ; for i ≠ j

βi
2σ2t þ σεi

2; for i ¼ j

(
(3)

whereσεi
2 ¼ Var εið Þ. Since there are six unique terms in the 3×3 covariancematrix (Q11,Q12,Q13,Q22,Q23,Q33),

we have six equations but seven unknowns (β1; β2; β3; σε1; σε2; σε3; σt); therefore, the system is
underdetermined and there is no unique solution. However, if we forego solving for βi and σ2t , and instead
define a new variable θi= βiσt , we can write

Qij ¼
θiθj; for i ≠ j

θ2i þ σεi
2; for i ¼ j

�
(4)

We now have six equations and six unknowns, and can solve the system. We obtain the TC estimation
equation for RMSE,

σε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q11 � Q12Q13

Q23

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q22 � Q12Q23

Q13

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q33 � Q13Q23

Q12

r

2
666666664

3
777777775

(5)

We may also solve for θi, but this is not typically done in TC. We will show in the next section that θi contains
useful information that forms the basis for ETC. Within the soil moisture community, triple collocation is
often applied by calculating the covariances of two differences between products [e.g., Scipal et al., 2008]. This is
equivalent to deriving the parameters from the measurement system covariance equations as discussed here.

In practice, “representativeness errors” may exist due to differences in support scale between measurement

systems, causing subtle cross correlations between the errors such that Cov εi; εj
� � ¼ r2ij > 0. This introduces

additional unknowns into the problem, rendering it underdetermined. To avoid this, the representativeness
error has been ignored in many studies that use TC, often without justification. However, if an estimate for r2ij
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exists, it can be easily subtracted from Qij. For wind measurements, r2ij can be estimated using assumptions

about the wind spectra [Stoffelen, 1998; Vogelzang et al., 2011], but little is known about the representativeness
error for other target variables.

If we are willing to treat one of the measurement systems as a reference with known calibration (i.e., known α
and β), we can reduce the number of unknowns and solve for the remaining unknowns without introducing
θi. Without loss of generality, assume X1 is the reference system and has been perfectly calibrated to t so that
α1 = 0 and β1 = 1. Then we have

β2 ¼
Q23

Q13
; β3 ¼

Q23

Q12

α2 ¼ X2 � β2X1 ; α3 ¼ X3 � β3X1

(6)

where the overbars denote sample means. The system is often solved iteratively, incorporating an outlier
detection and removal process. This is very important since covariance matrix estimates are highly sensitive
to outliers. In many studies, the measurement systems are rescaled before applying TC, and it is presumed
that β1 = β2 = β3 = 1 and α1 = α2 = α3 = 0, simplifying the TC estimation equation to

σε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q11 � Q12

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q22 � Q12

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q33 � Q13

p

2
64

3
75 (7)

Note, however, that this approach should be used with caution. Naively rescaling the measurement systems
(e.g., by matching their temporal variances) and applying this simplified estimation equation will deliver biased
RMSE estimates, since error estimation and calibration are fundamentally intertwined [Stoffelen, 1998]. In
practice, consistent estimates of calibration parameters and error estimates can be obtained by solving the
equations iteratively (see Vogelzang and Stoffelen [2012] for more details), since triple collocation achieves the
optimal rescaling [Yilmaz and Crow, 2013]. In this study we calculate RMSEs using equation (5) rather than
rescaling and using equation (7).

2.2. Extended Triple Collocation

In this section, we show that θi can be used to solve for the correlation coefficients of the measurement
systems with respect to the unknown truth. We demonstrate that the correlation coefficient contains useful
information beyond that provided by the RMSE. Recall that for OLS,

βi ¼ ρt;Xi

ffiffiffiffiffiffi
Qii

p
σt

(8)

where ρt;Xi
is the correlation coefficient between t and Xi. Note that this relation can also be obtained directly

from (1) using the standard definitions of correlation and covariance. We emphasize that the independent
variable t is the true underlying value and not subject to measurement error, so the OLS framework is valid. If
there are errors in the measurement of t that are not captured by the error model (1), then the OLS slope will
be biased and a new error model will be required [Cornbleet and Gochman, 1979; Deming, 1943]. Overcoming
these biases was, in fact, the original motivation for the development of triple collocation, rather than the
estimation of RMSEs [Stoffelen, 1998].

The key insight of ETC is that, from equation (8), we obtain θi ¼ ρt;Xi

ffiffiffiffiffiffi
Qii

p
. Since

ffiffiffiffiffiffi
Qii

p
is already estimated from

the data, and since we can solve for θi using equation (4), we can solve for ρt;Xi
. We obtain the new ETC

estimation equation

ρt;X ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q12Q13

Q11Q23

r

sign Q13Q23ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q12Q23

Q22Q13

r

sign Q12Q23ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q13Q23

Q33Q12

r

2
666666664

3
777777775

(9)

where the ρt;Xi
are correct up to a sign ambiguity. In practice, the measurement systems will almost always be

expected to be positively correlated to the unobserved truth.
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The correlation coefficients provide important new information about the performance of the measurement
systems. For the given error model (1), it can be shown that

ρ2t; Xi
¼ β2i σ

2
t

β2i σ
2
t þ σ2εi

¼ SNRub
SNRub þ 1

(10)

where we define SNRub ¼ Var X ’
ið Þ

Var εið Þ ¼ β2i σ
2
t

σ2εi
to be the unbiased signal-to-noise-ratio (in contrast, the standard

signal-to-noise ratio is SNR ¼ E X ′
i
2

� �
Var εið Þ ). The squared correlation coefficient therefore is the unbiased signal-

to-noise ratio, scaled between 0 and 1. It combines information about (i) the sensitivity of the measurement
system β, (ii) the variability of the signal σ2t , and (iii) the variability of the measurement error σ2ε . In contrast,
standard triple collocation only directly estimates (iii). Note that, while TC returns an estimate for (i), this is
estimated with respect to a reference measurement system. Its intended purpose is for calibration against
that reference measurement system, not as an estimate of the true system sensitivity. Therefore, ρ2t; Xi

contains useful additional information relevant to measurement system validation that is not included in σ2εi .
This is clear from the fact that, for a fixed MSE, ρ2t; Xi

may take any value between 0 and 1, its full range. This
makes intuitive sense: a given noise level may be too high for a low-sensitivity system measuring a weak
signal but acceptable for a high-sensitivity system measuring a strong signal.

We note that ρ2t; Xi
is closely related to the fRMSE metric defined in Draper et al. [2013] as fRMSE ¼ σεiffiffiffiffi

Qii
p . They

are both measures of relative similarity that isolate phase differences between two signals. Furthermore, it is

apparent that fRMSE ¼ σεiffiffiffiffi
Qii

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2εi
β2i σ

2
t þσ2εi

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2t; Xi

q
from equations (3) and (10) and therefore yields

identical performance rankings compared to those obtained using ρ2t; Xi
. However, in contrast to the fRMSE,

the correlation coefficient has been used in many validation studies spanning several decades [e.g., Jackson
et al. [2012], Mo et al. [1982], and Owe et al. [1992]).

3. Wind Data

In this section, we describe the buoy, NWP, and scatterometer wind products used in this study as a case
study for ETC. TC was originally designed for application to wind velocities [Stoffelen, 1998], and this target
variable more closely matches the assumptions of TC compared to other variables such as soil moisture
[Yilmaz and Crow, 2014]. Unlike other target variables, reasonable estimates of the representativeness error
also exist [Stoffelen, 1998; Vogelzang et al., 2011]. We use the same collocated triplets as in Vogelzang et al.
[2011] and refer the reader to this study for more detail on the data used; for completeness, we give a
brief description here. Three different scatterometer products are used. Wind retrievals from EUMETSAT’s
C-band Advanced SCATterometer (ASCAT) are processed to generate two different products: the 12.5 km
resolution ASCAT-12.5 product and the 25 km resolution ASCAT-25 product. Retrievals from the SeaWinds
sensor on board QuickSCAT are processed to generate the 25 km resolution SeaWinds-KNMI product.
Vogelzang et al. [2011] consider a fourth product, SeaWinds-NOAA, processed by the National Oceanic and
Atmospheric Administration. This product exhibited anomalous behavior compared to the others and is
omitted from this study. Table 1 gives further details on the scatterometer products used, including their grid
size, representativeness errors, and number of observations available that were also collocated with a buoy
and NWP measurement. The very large sample sizes (much larger than the recommended value of ~500
given by Zwieback et al. [2012]) ensure precise ETC estimates.

Table 1. Scatterometer Productsa

Product Grid Size (km) r2u m2s�2ð Þ r2v m2s�2ð Þ N

ASCAT-12.5 12.5 0.63 1.00 32,317
ASCAT-25 25 0.49 0.69 54,187
SeaWinds-KNMI 25 1.28 0.44 76,947

aThe scatterometer products and values used are identical to those used in Vogelzang et al. [2011]. N is the number of
collocated triplets available for each product. r2u and r2v are the estimated representativeness errors in the u and v wind
component measurements, respectively.
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Quality-controlled buoy data are taken from the European Center for Medium-range Weather Forecasting
(ECMWF) Meteorological Archival and Retrieval System. The NWP forecasts are also obtained from the
ECMWF. Collocated buoy-scatterometer-NWP triplets are obtained for the period 1 November 2007 to 30
November 2009, except for those including the ASCAT-12.5 product, where the period is 1 October 2008 to 30
November 2009. The study domain is largely restricted to the tropics and the coasts of Europe and North
America, due to a lack of reliable buoy observations outside these regions. The data are plotted in Figure 1.
Note that for each data set, the marginal distributions are approximately Gaussian, although Gaussian data
are not required for TC or ETC (indeed, TC has frequently been applied to non-Gaussian data such as soil
moisture). Gaussianity does, however, ensure that the RMSE is well defined and assists in interpretation. The
block correlations in the SeaWinds-KNMI and buoy data are due to binning in those data sets.

We use the ASCAT Wind Data Processor (AWDP) triple collocation scheme described in Vogelzang and
Stoffelen [2012, available at http://research.metoffice.gov.uk/research/interproj/nwpsaf/scatterometer/
TripleCollocation_NWPSAF_TR_KN_021_v1_0.pdf], updated to also calculate correlation coefficients. The
scheme solves iteratively for the RMSEs and correlation coefficients and includes quality control and outlier
detection and removal steps. We subtract out representativeness errors (Table 1) calculated in [Vogelzang
et al., 2011] and estimate 95% confidence intervals using bootstrapping [Efron and Tibshirani, 1994] with
N= 100 replicates. We perform the analysis with buoy-scatterometer-NWP forecast triplets three separate
times, using a different scatterometer product each time. In all analyses, the buoy data are used as the
reference data set, for consistency with Vogelzang et al. [2011]. However, the choice of reference system only
impacts the estimates of αi and βi (not shown), not our estimates of σεi and ρ2t; Xi

.

4. Results and Discussion

Figure 2 shows the ETC estimates of u, v RMSE and correlation coefficient for the buoy, NWP, and various
scatterometer products. The RMSE estimates are all low and the correlation coefficients are all high. They are
consistent with reasonable guesses for β and σ2t . As an example, consider the ETC estimates of scatterometer
u RMSE σε(u) = 1.05 m s� 1 and correlation coefficient ρt,X(u) = 0.985, estimated using ASCAT-12.5
scatterometer data (we use the mean of the bootstrapped replicates here). Substituting into equation (10),
and assuming β ≈ 1, we obtain σt≈ 6. While the true value of σt is unknown, this estimate appears very
reasonable given the marginal distribution of u in Figure 1a.

The results demonstrate the importance of using a validation metric that combines measures of noise and
sensitivity, rather than noise alone. Focusing on the scatterometer ETC estimates, we see that, for u, the

Figure 1. Scatter plots and kernel-density-estimated marginal distributions (on the same axes) for the wind data used in
this study, where u is the zonal wind velocity and v is the meridional wind velocity. Plots for scatterometer products
correspond to (a) Advanced SCATterometer (ASCAT)-12.5, (b) ASCAT-25, and (c) SeaWinds-KNMI. Plots for (d) buoys and (e)
Numerical Weather Prediction (NWP) products are also shown. The marginal distributions are all approximately normal for
all products used.
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highest correlation coefficients correspond to the lowest RMSEs and vice versa. Since σt does not vary between
scatterometer products, this suggests that differences in noise dominate differences in sensitivity between
products. For v, however, this is not the case: ASCAT-12.5 has the highest RMSE but does not have the lowest
correlation coefficient. This suggests that, while ASCAT-12.5 estimates of v are noisier than those of ASCAT-25,
ASCAT-12.5 has a greater SNRub because it is more sensitive to the signal, v, although it may also be an artifact
caused by incorrect assumptions in the errormodel (1). In this case study, the differences in noise and sensitivity
between products are relatively small. However, it is easy to imagine scenarios where validating multiple
satellite products on the basis of RMSE alone, compared to a combination of RMSE and correlation coefficient,
could yield very different interpretations of their relative performances.

ETC builds on TC but also inherits its weaknesses. Using different scatterometer products, we would expect
the ETC estimates of buoy RMSEs and correlation coefficients to remain identical; similarly, for the NWP
estimates. While the differences are small, they are too large to be explained by sampling error (particularly
for the NWP estimates) and are likely due to subtle violations of the error model’s assumptions or inaccurate
corrections for representativeness errors. If the error model given in (1) is not valid, the estimates of RMSE
and correlation coefficient will be biased. The results are particularly sensitive to the assumption of
independent errors between buoy, scatterometer, and NWP estimates. However, these are all preexisting
weaknesses in TC and not unique to ETC. ETC uses exactly the same assumptions as TC.

5. Conclusions

Triple collocation is a powerful and popular technique for calibrating and validating measurement system
estimates of geophysical target variables. In this paper, we introduced ETC: using exactly the same error
model and assumptions as TC, we derived the correlation coefficient of each measurement system with
respect to the unknown target variable. We demonstrated that ETC’s correlation coefficient provides useful
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Figure 2. (Rows 1 and 3): Triple collocation estimates of the root-mean-square-errors (RMSEs) for u (σε(u)) and v (σε(v)) for
the buoy, scatterometer, and NWP products, respectively, calculated using equation (5). The analysis is performed with
buoy-scatterometer-NWP forecast triplets three separate times, using a different scatterometer product each time. (a)
ASCAT-12.5, (b) ASCAT-25, and (c) SeaWinds-KNMI). (Rows 2 and 4): Extended triple collocation estimates of the correlation
coefficient for u (ρt,X(u)) and v (ρt,X(v)) for the buoy, scatterometer, and NWP products, respectively, calculated using
equation (9). Bootstrap estimates (N=100 replicates) of the 95% confidence intervals are shown for each estimate. The
bootstrapped sample means of σε(u) and σε(v) are identical to the values given in Table 4 of Vogelzang et al. [2011].
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insights into the correspondence between the measurement system estimates and the target variable,
beyond those provided by TC’s RMSE estimate. By integrating information on the measurement system’s
sensitivity to the target variable, measurement noise, and the variability of the target variable itself, the
correlation coefficient provides a complementary (and sometimes, very different) perspective to that of the
RMSE when validating measurement systems. In particular, the measurement noise (estimated by the RMSE)
is much more informative when interpreted relative to the observed signal: for instance, a small amount of
measurement noise, in absolute terms, may still be of concern if the measurement system is relatively
insensitive to the target variable, and/or the target signal is weak [Entekhabi et al., 2010]. Since ETC uses
exactly the same assumptions as TC, it appears that it may also facilitate the estimation of correlation
coefficients in recent generalizations of TC from n=3 measurement systems to n ≥ 3 [Zwieback et al., 2012]
and, in cases where the target variable has sufficient temporal autocorrelation, n=2 [Su et al., 2014]. Finally,
since ETC is as easy to implement as TC, requires no additional assumptions, and provides estimates of
two complementary performance metrics instead of one, we suggest that it may be of interest to
practitioners in a wide range of geophysical disciplines.
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