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The global distribution and dynamics of surface
soil moisture
Kaighin A. McColl1,2, Seyed Hamed Alemohammad1, Ruzbeh Akbar1, Alexandra G. Konings1,3,
Simon Yueh4 and Dara Entekhabi1,5*

Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in
the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves.
However, sparse and uneven observations have made it di�cult to quantify the global distribution and dynamics of surface
soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA’s
Soil Moisture Active Passive mission to show that surface soil moisture—a storage believed to make up less than 0.001%
of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land
surfaces—plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of
precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three
days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower
groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water
cycle by the surface soil moisture storage layer at the land surface.

Arguably, one of the most fundamental tasks of hydrologic
science is to quantify the distribution of water across global
storages (which we term the ‘water budget’), and the rates

at which water cycles between them (the ‘water cycle’). The water
cycle is often quantified in terms of a storage’s average ‘residence
time’ (the time water spends in the storage, on average, between
entering and exiting) or ‘memory’ (broadly, the time taken for the
storage to dissipate a positive or negative anomaly). Many previous
studies have provided estimates of these quantities, for storages
including the atmosphere, groundwater, glaciers and oceans (for
example, ref. 1). At the interface of the lithosphere (which has
residence times on the order of months to tens of thousands of
years) and atmosphere (which has residence times on the order of
days), the surface soil layer (defined here as∼5-cm deep) displays
complex moisture dynamics governed by an enormous range
of timescales.

Quantifying the magnitude and dynamics of the surface soil
moisture (SSM) storage is essential for many practical reasons. Soil
moisture plays an important role in soil microbial respiration2,
biogeochemical cycles3, streamflow4, crop yield5, dust generation6,
and disease transmission7. Soil moisture in deeper soil layers can
be a more relevant controlling variable for some processes, and
can become decoupled from SSM in dry conditions8. However, in
many cases, SSM is well correlated with soil moisture in deeper
layers and little information is lost by focusing exclusively on SSM9.
The residence times of soil moisture are also important for the
prediction of heatwaves, droughts, floods and thunderstorms. This
is because soil moisture has considerable memory compared with
the atmosphere. An atmospheric anomaly (such as a thunderstorm)
will dissipate rapidly (hours), whereas the resulting soil moisture
anomaly will take much longer to dissipate (days–months). This

anomaly can then modulate or trigger subsequent atmospheric
anomalies, suggesting that it may have substantial utility in
atmospheric forecasts at seasonal timescales10.

Many previous studies have estimated soil moisture memory,
using models or point-scale observations (for example, refs 11–15).
Some studies explicitly estimate a soil moisture memory timescale
(for example, ref. 11). Others estimate it implicitly, by estimating
the time series autocorrelation (for example, ref. 12) (see Methods:
Relation of FP(f ) to other soilmoisturememorymetrics). Given that
soil moisture varies considerably across models16, it is particularly
important to obtain estimates from observations. However, point
estimates of soil moisture are too sparse, and coverage is too
uneven, to provide a global picture of soil moisture memory.
Furthermore, soil moisture memory estimates are dependent on
the temporal sampling frequency of the soil moisture observations.
Previous large-scale studies estimated memory from approximately
monthly observations, missing substantial short-term variability.
This missing variability can lead to overestimation of the memory
timescale (see Methods: Overestimation of soil moisture memory
due to finite sampling frequency in previous studies).

Spaceborne measurements of surface soil moisture
Global observations of SSM are now available from Earth-orbiting
satellites. Building on previous missions17–19, National Aeronautics
and Space Administration’s (NASA’s) Soil Moisture Active Passive
(SMAP) satellite mission20 launched in January 2015. SMAP
measures L-band microwave radiation emitted and scattered from
the land surface, using a radiometer and radar, respectively. The
measured radiation bears the signature of SSM, allowing its
retrieval after accounting for the effects of other factors, such
as vegetation, surface temperature and surface roughness. The
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Figure 1 | The stored precipitation fraction. Top left and right: the stored
precipitation fraction FP(f) is a dimensionless measure of the degree to
which a soil layer (of depth1z) retains precipitation inputs (P) over a given
timescale 1/f, given losses due to evapotranspiration (E), drainage (D) and
runo� (R). Bottom left and right: two example soil moisture time series
from in situ observations30, sampled at two di�erent sampling frequencies
— f= 12 d−1 (black, crosses) and f= 1/3 d−1 (red, circles). Inset: the sum
of positive increments in the soil water time series, for the two di�erent
sampling frequencies.

radar and radiometer measure SSM in different ways, and provide
complementary estimates. The radar measured SSM at 3-km spatial
resolution, and collected observations for 11 weeks before ceasing
operations due to an instrument anomaly. The SMAP radiometer
measures SSM at approximately 40-km resolution, and continues to
provide high-quality SSM retrievals. In addition to providing global
coverage, SMAP’s sampling frequency (nominally, f = 1/3 d−1)
is substantially higher than that used in any other large-scale,
observations-based estimate of soil moisture memory.

In this study, we use the first full annual cycle of SMAP SSM
observations to quantify the global distribution and dynamics of
SSM. To do this, we introduce a new measure of soil moisture
dynamics, the stored precipitation fraction (FP(f )), defined as the
average proportion of precipitation falling on a soil layer that is still
present in the soil layer after 1/f days (Fig. 1). Given a soil moisture
time series discretely sampled (with sampling frequency f ) over a
finite time period, it is calculated as the sum of positive soil water
increments, normalized by the total precipitation falling in the time
period (see Methods).

Figure 2 shows the global distribution of mean SSM and FP(f )
observed by SMAP, where the nominal sampling frequency for
SMAP is f = 1/3 d−1. The global distribution of mean daily
precipitation from the Global Precipitation Measurement (GPM)
mission is also shown (see Methods). Mean SSM is highest in
the tropics (substantially masked out in Fig. 2 due to significant
vegetation cover), over the eastern United States, and across
northern Europe and Russia; and lowest in deserts (such as those
in central Asia, Australia and the Sahara) and in semi-arid regions

(such as large parts of the western US). The probability density
function (PDF) of SSM peaks around 0.1, but exhibits a heavy tail.
These results are broadly consistent with previous global remote-
sensing studies (for example, refs 21,22). The SSMdynamics are also
quantified in Fig. 2b. Like SSM and mean daily precipitation, the
PDFof FP(1/3) is also heavy-tailed. FP(1/3) is consistently low in the
tropics (again, substantially masked out in Fig. 2 due to significant
vegetation cover), where precipitation is often very intense, and
both evapotranspiration and drainage fluxes are generally fast on
average. This includes southeast Asia and southern China, India
and northwestern Australia. It is also low across the eastern United
States. In these regions, the terrestrial water cycle at the land
surface overturns rapidly, with the vast majority of inflows from
precipitation leaving the surface soil layer within three days.

FP(1/3) is highest in mid-latitudes. In particular, it is high
in northern Africa, parts of the Middle East, central Asia and
northern China. It is also high in the western United States. In
these regions, the water cycle at the interface of the atmosphere
and the land surface overturns at a slower rate. On average, the
global mean storage of SSM is equivalent to only a thin layer
of water over all continents with a depth of merely 8mm. Yet,
on average, 14% of precipitation falling on land remains in this
layer after three days. The SSM storage is therefore only a minor
component of the global water budget, but plays a relatively much
more significant role in the globalwater cycle. It should be noted that
the effective sampling frequency of the SMAP observations differs
slightly from the nominal sampling frequency of 1/3 d−1 in some
regions. However, the effect of these deviations is relatively small
(see Methods: Effective SMAP sampling frequency). Measurement
noise also induces an estimation bias in FP(f ), which while typically
small, can be on the order of 10−1 in some dry regions. Other
soil moisture memory metrics also suffer from estimation biases
(see Methods: Estimation bias induced by measurement noise). The
relatively large observed fraction of precipitation remaining in the
SSM storage after three days is consistent with a recent study that
found satellite-observed SSM can be used to obtain skilful estimates
of antecedent precipitation23.

Determinants of surface soil moisture memory
FP(1/3) decreases monotonically with increasing mean SSM, albeit
with substantial variance at low SSM values (Fig. 3). As SSM
increases, both drainage and runoff increase significantly. Regions
of low FP(1/3) are broadly located in regions where SSM is high,
on average, and where groundwater recharge24 and groundwater
storage25 are both largest. In other words, in regions where drainage
to groundwater storage is largest, the surface soil layer retains a
lower fraction of incoming precipitation; presumably, more of the
precipitation rapidly drains to deeper groundwater storages. For
drier soils however, hydraulic conductivity (and therefore drainage
to groundwater storages) is reduced, as is saturation excess runoff,
resulting in a higher fraction of incoming precipitation being
retained in the surface soil layer (that is, higher FP(1/3)). These
results are in contrast to a previous model-based study, which found
soilmoisturememory (defined as the 27-day-lagged autocorrelation
of the modelled total soil moisture, vertically integrated across the
soil profile) is highest in regions with intermediate amounts of
soil moisture12. While FP(1/3) appears to be lowest at low soil
sand fractions, there is substantial variability, and there do not
appear to be clear relations between FP(1/3), and soil sand and
clay fractions (Fig. 3). We also note that estimation biases may
contribute to the larger FP(1/3) in drier regions (see Methods:
Estimation bias induced by measurement noise). Overall, these
results demonstrate that, speaking broadly at global scales, lower
groundwater storage in drier regions is due not only to lower
precipitation, but also to greater partitioning of the water cycle
by the SSM storage. Hence, while SSM is only a small component
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Figure 2 | Global distribution and memory of surface soil moisture. a, Global map of annual mean SSM (1 April 2015–31 March 2016), with PDF (inset)
and zonal mean (right panel). Marker sizes in all zonal plots are proportional to zonal land area; shaded region shows±1 standard deviation. White regions
in map are missing or masked (see Methods). b, The same as in a, except for FP(1/3), and the marker colours in the zonal plot indicate the zonal mean SSM.
c, The same as in a, for mean daily precipitation.

of the global water budget (making up less than 0.001% of the
global freshwater budget by volume1), it plays a substantial role in
partitioning water between storages.

These analyses provide the first global estimates—derived from
observations rather than models—of both the magnitude and
dynamics of the SSM storage. In most regions, FP(1/3) is less
than or equal to 14%, and decreases with increasing SSM. While
this is large relative to the volume stored in SSM, many previous
studies estimate a soil moisture memory timescale on the order
of several months, which seems inconsistent with the results seen
here. This result is further confirmed by repeating the analysis

on SMAP observations thinned to lower sampling frequencies
(Supplementary Figs 5–8): in particular, estimated FP(1/30) rarely
exceeds 5% (Supplementary Fig. 8), and the normalized difference
(FP(1/3)−FP(1/30))/(FP(1/3)) is close to one in most parts of the
world (Supplementary Fig. 9). While a memory timescale on the
order of months may be accurate for deeper soil layers (∼1-m), to
our knowledge, the only observational study looking at shallower
layers (10 cm) at several mid-latitude sites also yielded an estimate
on the order of months11. It seems more likely, therefore, that this
difference is largely due to the higher-frequency SMAPobservations
used in this study, which resolve a greater fraction of the soil
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Figure 3 | Global relations between stored precipitation fraction and soil
moisture content and texture. a, Global relation between FP(1/3) and
annual mean SSM, estimated using one year of observations (1 April
2015–31 March 2016). Boxplots show the median (red horizontal line), 25th
and 75th percentiles (top and bottom of the grey shaded box, respectively),
and maximum and minimum observed values (edges of the top and bottom
whiskers, respectively). b, Global relation between FP(1/3) and sand
fraction. c, Global relation between FP(1/3) and clay fraction.

moisture temporal variability, and therefore allow more accurate
estimates of its memory. The additional variability resolved by
higher-frequency observations will, by definition, lead to a shorter
memory timescale. In addition, we focus on positive anomalies
typically associated with faster-dissipating rainfall pulses.

Implications for land–atmosphere interactions
Beyond the fundamental importance of characterizing the
magnitude and response timescales of Earth’s water storages, a key
application of these results is in identifying regions with strong
land–atmosphere coupling—recognizing that we focus here only
on the SSM-controlled part of this coupling and cannot assess the
fraction of stored precipitation in regions with dense vegetation
coverage. Significant soil moisture memory is a necessary condition
for land–atmosphere feedbacks26. However, soil moisture–
precipitation feedbacks can occur at both high or low soil moisture
values, and are driven by different mechanisms27. This analysis
focuses on the memory of wet SSM anomalies, which typically
have a stronger influence on precipitation forecast skill than dry

anomalies28. Our results are consistent with a recent study that
found significant positive soil moisture–precipitation feedbacks
in the western United States29, where we also find relatively high
FP(1/3). These results may therefore have particularly important
implications for short-term weather forecasting of extreme
precipitation events and floods globally, in regions where these are
strongly controlled by SSM rather than root-zone soil moisture or
other processes. Furthermore, since the stored precipitation fraction
can be readily estimated from land surface model outputs (for
models containing a discrete surface soil moisture layer), comparing
SMAP-estimated and model-estimated FP(f ) will provide a useful
test of model fidelity to global water cycle dynamics.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Data sets. SSM estimates are obtained from the NASA Soil Moisture Active Passive
(SMAP) mission20. Launched in January 2015, SMAP currently produces
radiometer-only global SSM values at approximately 40-km spatial resolution
(−3 dB half-power radiometer beamwidth but posted at 36 km) with an
approximate three-day revisit cycle (see Supplementary Fig. 4 for a global map of
the effective revisit time). The SMAP penetration depth is approximately 5 cm
(ref. 31) (but varies subtly with soil moisture content). A full year of global SSM
maps spanning 1 April 2015–31 March 2016 are used in this study32. Regions where
vegetation water content is greater than 5 kgm−2, where the soil is frozen, or where
soil moisture retrievals are substantially contaminated by radio frequency
interference or the presence of small water bodies are excluded from the analysis.
While observations from other soil moisture satellite missions could also be used,
differences in revisit times—and therefore, sampling frequencies—complicate the
comparison. Therefore, for simplicity, we use only SMAP observations in this
study. Preliminary validation studies of SMAP radiometer soil moisture retrievals
demonstrate that they are, on average, within the mission target accuracy of
0.04m3 m−3 unbiased root-mean-square difference33.

Precipitation estimates are obtained from the NASA Global Precipitation
Mission (GPM), at a spatial resolution of 0.1◦. Observations are available in the
latitudinal range±60◦ (the coverage of the GPM orbit). Where available, either
half-hourly Final-Run34 (1 April 2015–31 December 2015) or Late-Run
(1 January 2016–1 April 2016) Integrated Multi-satellitE Retrievals for GPM
(IMERG) are used to cover the same temporal period as that of the SMAP SSM
observations. GPM precipitation data are re-gridded to the EASE 2.0 grid
projection. Regions where annual precipitation is zero, or where estimated
FP(f )>1, are excluded from the analysis.

Soil clay and sand fraction data are obtained from a global composite of soil
texture data sets prepared for the SMAP mission35.

The results in this study are estimated from one year of data, which is a large
enough sample to broadly characterize the global climatology, while recognizing
that in some regions, the results will deviate from the climatological mean.

Definition of stored precipitation fraction. Surface soil moisture (SSM) is defined
as the volumetric water content of a soil sample θ=Vw/(Vs+Vw+Va), where
Vw is the volume of water, Vs is the volume of solids and Va is the volume of air. It is
bounded above by the volumetric soil porosity, φ= (Vw+Va)/(Vs+Vw+Va). The
water mass balance equation for a surface layer of soil spanning a depth of1z (m) is

1z
dθ
dt
=P−E−R−D

where P is precipitation rate (md−1), E is evapotranspiration (including
interception losses) (md−1), R is surface and subsurface lateral runoff (md−1)
and D is drainage into deeper layers (md−1). P and E are always
positive. R can be positive (runoff) or negative (run-on). Similarly, D can be
positive (drainage to deeper layers) or negative (wetting from capillary rise).

We start with a SSM time series consisting of discrete samples θi with sample
index i. For simplicity, we assume θi has a constant sampling frequency f (d−1) over a
sampling period of lengthT (d). The stored precipitation fraction FP(f ) is defined as

FP(f )=
1z
∑fT

i=11θi+∫ T
0 P(t)dt

(1)

where

1θi+=

{
1θ i, if1θ i>0
0, otherwise (2)

where1θ i=θi−θi−1, and
∫ T
0 P(t)dt is the accumulated precipitation in the

time period (m).
We assume the SSM increment1θ is positive only if precipitation occurs

(P>0). This will not be true in regions where substantial soil wetting occurs due to
capillary rise from deeper layers (negative D) or run-on (negative R). However, at
the large spatial scales observed by SMAP (approximately 40 km), very few pixels
are expected to show positive1θ in the absence of P due to these mechanisms.
With this assumption in place, the stored precipitation fraction measures the
proportion of the precipitation input flux that enters the SSM storage and remains
there after a time interval 1/f . For SMAP, f =1/3 d−1, although the effective
sampling frequency can differ slightly in some regions due to missing data (lower
f ) and satellite half-orbit overlap in the extra-tropics (higher f ). See Supplementary
Fig. 4. Over the time interval 1/f , some of the precipitation input will be lost to E, R
and D. The magnitudes of these losses depend on weather, geology and the time
interval f itself.

If E +D+R is, on average, high relative to P over the timescale 1/f (Fig. 1, top
left), then FP(f ) will be low (∼0). If E+D+R is, on average, low relative to P over

the timescale 1/f (Fig. 1, top right), then FP(f ) will be high (∼1). As the sampling
frequency decreases, FP(f ) will decrease, since the variability resolved by the time
series decreases (Fig. 1, bottom left and right).

Relation of FP(f ) to other soil moisture memory metrics. Soil moisture memory
is loosely defined as the time taken by the soil to ‘forget’ an anomaly (caused, for
instance, by atypically heavy rainfall, or atypically dry conditions15). It has been
estimated using both models12,15,36–38 and point-scale observations11,13,14,39–43. Many
metrics exist for quantifying soil moisture memory.

Soil moisture memory metrics may typically differ from one another in three
respects. First, the metric is often defined as either a timescale over which soil
moisture anomalies are largely dissipated; or as a degree of correlation between
anomalies over a fixed time lag (or equivalently, a fixed sampling frequency).
Second, the soil moisture anomaly is defined as a deviation from a reference state,
which may be an annual mean, monthly mean, time-varying trend, or other value.
Third, the metric may consider only positive anomalies (that is, wetting events),
consider only negative anomalies (that is, drying events) or blend both positive and
negative anomalies without distinguishing between their sign. Several relevant
metrics, including the stored precipitation fraction, are compared with respect to
these three properties in Supplementary Table 1 and discussed further below.

Several metrics are based on the soil moisture time series’ autocorrelation. The
autocorrelation ρ(t) is the correlation between any two points in the time series,
separated by a time interval t . Typically, it is assumed that the time series is
stationary, so ρ(t) does not vary in time. By definition, the mean soil moisture state
is removed when estimating ρ(t), so it is implicitly a measure of correlation
between anomalies, where here anomalies are defined as deviations from a mean
soil moisture state. The autocorrelation ignores the sign of the anomaly, so any soil
moisture memory metric based on ρ(t) cannot distinguish between positive and
negative anomalies. Two examples of soil moisture memory timescales that may be
estimated from ρ(t) are the e-folding11,36,41 and integral timescales13,39
(Supplementary Table 1). Both timescales increase with increasing ρ(t). Rather
than estimating an anomaly dissipation timescale, some authors use an estimate of
ρ(t) itself, evaluated at a fixed value of t (for example, one month), as a soil
moisture memory metric12,15. This can be generalized to estimating ρ(t) for a range
of values of t , in which case ρ(t) is often Fourier-transformed to obtain the soil
moisture variance spectrum Es(f ), where f is frequency, corresponding to an
inverse time lag13,40.

While these metrics have enjoyed considerable success, we highlight two
weaknesses. First, by defining an anomaly as a deviation from a mean soil moisture
state, the anomaly becomes dependent on the estimate of the mean state; and
estimates of the mean state can be highly uncertain. For instance, for monthly soil
moisture observations, the monthly mean soil moisture state might be estimated
from its historical average. However, in many cases, the historical record will be too
short to do this without introducing significant sampling error. This problem is
further exacerbated when using daily or hourly observations, where the increased
soil moisture variability demands an even longer historical record to precisely
estimate the mean soil moisture state at a daily or hourly timestep. Therefore, in
practice, soil moisture memory metrics based on autocorrelation will be
non-trivially dependent on the estimated mean soil moisture state39. This is
particularly true when applied to observations with a sub-monthly temporal
resolution. Second, the sign of the soil moisture anomaly provides physically
meaningful information that is ignored by autocorrelation-based metrics. At large
spatial scales, positive spikes in soil moisture are almost always caused by rapid,
essentially stochastic precipitation events (with some rare exceptions). In contrast,
negative anomalies are caused by slower processes (such as evapotranspiration),
which are quasi-deterministic39. It is therefore useful to quantify the anomaly
dissipation timescales of the rapid and slow processes separately.

To avoid these problems, metrics that move beyond the time series
autocorrelation may be useful. One such metric is the mean persistence time39,
defined as the mean time the soil moisture time series spends above or below a
fixed soil moisture threshold (Supplementary Table 1). The soil moisture threshold
can be any value of interest, for example, wilting point soil moisture. Anomalies are
then defined as deviations from this fixed threshold. A key benefit of this approach
is that positive and negative anomalies are considered separately. However, the
mean persistence time is still dependent on the choice of fixed threshold.

In contrast to previous metrics, the stored precipitation fraction FP(f ) is not
dependent on the choice of soil moisture reference state used to define anomalies.
This is because anomalies are defined relative to the soil moisture state prior to the
last precipitation event. Furthermore, positive and negative increments are
considered separately. The stored precipitation fraction is a frequency-dependent
measure of soil moisture variability, so it is natural to compare it to the spectrum of
soil moisture variance Es(f ). More precisely, the sum of positive increments (used
in estimating FP(f )) is a measure of the variability of soil moisture at frequencies
between 1/Tand f , so it is analogous to the integral of the soil moisture variance
spectrum, integrated between 1/T and f . If1θ i was a Gaussian random variable,
then FP(f ) would be proportional to the soil moisture standard deviation. However,
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the distribution of soil moisture increments is typically skewed and, therefore,
non-Gaussian. This is a signature of the physically meaningful differences between
positive and negative soil moisture anomalies.

Overestimation of soil moisture memory due to finite sampling frequency in
previous studies. Previous studies typically used soil moisture time series with an
approximately monthly sampling frequency. There are some exceptions11,13,14,39,40,
but the difficulty of maintaining long-term, high-frequency soil moisture
observations means these are constrained to a handful of locations. Here, we show
that a classical estimate of soil moisture memory from monthly observations will
be typically overestimated.

Most previous estimates of soil moisture memory are based on an estimate of
the time series autocorrelation ρ(t), defined as

ρ(t)=
R(t)
R(0)

where R(t)=Cov(θi,θi+t ) is the autocovariance of the soil moisture time series θi.
Given soil moisture observations with a sampling frequency f d−1, the smallest lag
resolvable by the time series is t=1/f . However, substantial autocovariance may
exist at shorter time lags t<1/f . Furthermore, an estimate of R(0) is required to
estimate ρ(t). Previous studies typically estimate R(t) by fitting a curve to
observations for t≥1/f , and then use the fitted curve to project onto the interval
0≤ t<1/f . However, this method is heuristic and often substantially
underestimates R(0), particularly in drier areas, resulting in a positively biased
estimate of ρ(t). Therefore, any soil moisture memory timescale τ estimated from
ρ(t) will also be overestimated. An example of this is illustrated in Supplementary
Fig. 1. Acknowledging this problem, the authors of ref. 11 distinguished between
two different soil moisture timescales: the (longer) ‘meteorological scale’, controlled
by precipitation and evaporative demand, and the (shorter) ‘land surface scale’,
controlled by soil characteristics, topography and vegetation. They estimated the
‘meteorological’ timescale from observations, and treated the ‘land surface’
timescale as white noise.

Previous estimates of soil moisture memory are, therefore, dependent on the
sampling frequency f and are likely to be substantially overestimated, especially
when estimated frommonthly observations. While the stored precipitation fraction
is also sampling frequency-dependent, it explicitly includes this dependence in its
definition and interpretation.

Estimation bias induced by measurement noise. Like other soil moisture memory
metrics, in the presence of measurement noise, FP(f ) is a biased estimator. In this
section, we characterize the bias induced by measurement noise on estimates of the
stored precipitation fraction. We focus the analysis on random errors since fixed
biases will be automatically subtracted out in the process of estimating temporal
increments. Due to measurement noise from various sources, we observe
dimensionless volumetric water content θ̂ (t)=θ(t)+ε(t) over some time interval
[0, T ] days. The noise ε(t) is modelled as a mean-zero Gaussian random variable,
while the true soil moisture θ(t) is treated as deterministic. We assume the noise is
uncorrelated in time and has constant variance σ 2 (−).

For simplicity, start by considering the distribution of a single soil moisture
increment1θ̂i= θ̂i− θ̂i−1=1θi+ ei, where ei=εi−εi−1 is a mean-zero Gaussian
random variable with a constant variance of 2σ 2. Now threshold1θ̂i so that any
negative values are forced to be zero. The PDF of the thresholded increment1θ̂i+ is

f (1θ̂i+|1θi,σ)=



1
2σ
√
π
exp

(
−(1θ̂i+−1θi)

2

4σ 2

)
, if1θ i+>0

8
(
0|1θi, 2σ 2)

+
1

2σ
√
π
exp
(
−1θ 2i

4σ 2

)
, if1θ i+=0

0, if1θ i+<0

where8(0|1θi, 2σ 2) is the cumulative density function for a normal random
variable with mean1θi and variance 2σ 2, evaluated at zero. Two example PDFs are
shown in Supplementary Fig. 2. When1θi�0, almost all the density is at zero,
reflecting the unlikeliness of random noise causing the increment to become
positive if it is highly negative. When1θi�0, the distribution is essentially
Gaussian and unaffected by thresholding.

Since FP(f ) is just a linear combination of1θi+, the noise bias in FP(f ) can be
estimated from the individual biases in1θi+. The expected value of1θi+ is

E
(
1θ̂i+

)
=

∫
∞

−∞

xf (x)dx=
∫
∞

0

x
2σ
√
π
exp

(
−(x−1θi)2

4σ 2

)
dx

Solving the integral, we obtain

E(1θ̂i+)=
σ
√
π
exp
(
−1θ

2
i /4σ

2)
+
1θi

2
(
1+erf

(
1θi/2σ

))
(3)

Using equations (2) and (3), the noise bias in1θ̂i+ is

δi = E(1θ̂i+)−1θi+

=
σ
√
π
exp
(
−|1θi|

2
/4σ 2)

−
|1θi|

2
(
1+erf

(
−|1θi|/2σ

))
(4)

The bias in FP(f ) is

E
(
FP(f )

)
−FP(f )=

1z
∑fT

i=1 E(1θ̂i+)
P

−
1z
∑fT

i=11θi+

P
=
1z
∑fT

i=1 δi

P
(5)

which can be evaluated using equation (4), for a general case with prescribed soil
moisture increments and measurement noise.

The bias in a single increment (δi) is plotted in Supplementary Fig. 3, for
varying1θi and σ . The bias is largest when the soil moisture increment is small,
and increases with increasing σ . For a fixed σ , it drops rapidly with
increasing/decreasing1θi away from zero.

Further insight can be gained by examining a special case. For the case where
the true soil moisture is constant in time,1θi=0. Therefore, from equations (4)
and (5),

E
(
FP(f )

)
−FP(f )=

1z
∑fT

i=1
σ
√
π

P
=
1zfTσ
P
√
π
=
1zf σ
P̄
√
π

where P̄ is the average daily precipitation. The bias therefore increases linearly with
sampling frequency f , sampling depth1z , and noise standard deviation σ . It will
be most pronounced in dry regions with low P̄ . The1θi=0 case is a worst-case
scenario since, for a given σ , δi is maximized when1θi=0. Hence, this is an upper
bound on the bias in FP(f ) due to measurement noise. A typical value for this upper
bound when applied to SMAP data over a semi-arid region (using P̄=1mmd−1,
1z=50mm, f =1/3 d−1 and σ=0.04 (−)) is E

(
FP(f )

)
−FP(f )∼0.4. We

emphasize that this is a loose upper bound on the bias, rather than an estimate of
the bias itself. This upper bound is unlikely to be reached, since it would require a
perfectly constant soil moisture time series. Furthermore, as evident from
Supplementary Fig. 3, the bias drops rapidly as the soil moisture increment moves
away from zero (either increasing or decreasing). We note that estimation biases
induced by measurement noise are not unique to the stored precipitation fraction.
For instance, the estimated autocorrelation will also be biased in the presence of
measurement noise44,45, meaning other metrics used in previous studies would face
similar challenges when applied to satellite observations.

In summary, the bias is most significant in dry regions with little precipitation,
but is generally expected to be low in most areas for SMAP observations. In this
study, rather than attempting to remove the bias (which would require modelling of
the observation noise and the true soil moisture time series globally, introducing
substantial new sources of error into the analysis), we simply note that it is
generally small but may occasionally be on the order of 10−1 in some
dry areas.

Effective SMAP sampling frequency. SMAP sometimes does not retrieve soil
moisture, for instance, if the soil is frozen, if there is significant radiofrequency
interference, or if vegetation water content exceeds 5 kgm−2. Hence, in some
regions, the effective SMAP sampling frequency will be lower than the nominal
value determined by the SMAP polar orbit and swath coverage (f =1/3 d−1). In
others, it is higher than the nominal sampling frequency, due to overlap in the
satellite descending half-orbits. In this case, the SMAP observations are
undersampled to ensure f ≤1/3 d−1. The effective SMAP sampling frequency is
shown in Supplementary Fig. 4.

In cases where the effective sampling frequency is lower than the nominal
value, we expect FP(f )may be systematically lower, since it is a function of f . All
else being equal, observed soil moisture variability will be lower at lower sampling
frequencies (Fig. 1). Decreasing f will also decrease the estimation bias in FP(f ),
which decreases with f . Comparing Supplementary Fig. 4 with Fig. 2 confirms that
prominent regions where f is considerably lower than the nominal value—such as
the Tibetan Plateau, northeastern China and Russia, and patches of the US
Midwest—correspond to lower stored precipitation fractions. However, overall, the
correlation between sampling frequency and FP(f ) is weak, with a linear relation
between the two variables explaining less than 10% of the observed variance.

Data availability. The data used in this study are publicly available. SMAP SSM
observations are available from http://dx.doi.org/10.5067/7EW92T1NI4M4. The
Final-Run and Late-Run Integrated Multi-satellitE Retrievals for GPM (IMERG)
are available from http://dx.doi.org/10.5067/GPM/IMERG/HH/3B and
http://disc.gsfc.nasa.gov/datacollection/GPM_3IMERGHHL_V03.html,
respectively. Soil texture data sets are available on request from N. Das
(nndas@jpl.nasa.gov).
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