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A B S T R A C T

The landscape freeze/thaw (FT) state plays an important role in local, regional and global weather and climate,
but is difficult to monitor. The Soil Moisture Active Passive (SMAP) satellite mission provides hemispheric
estimates of landscape FT state at a spatial resolution of approximately 362 km2. Previous validation studies of
SMAP and other satellite FT products have compared satellite retrievals with point estimates obtained from in-
situ measurements of air and/or soil temperature. Differences between the two are attributed to errors in the
satellite retrieval. However, significant differences can occur between satellite and in-situ estimates solely due to
differences in scale between the measurements; these differences can be viewed as ‘representativeness errors’ in
the in-situ product, caused by using a point estimate to represent a large-scale spatial average. Most previous
validation studies of landscape FT state have neglected representativeness errors entirely, resulting in con-
servative estimates of satellite retrieval skill. In this study, we use a variant of triple collocation called ‘cate-
gorical triple collocation’ – a technique that uses model, satellite and in-situ estimates to obtain relative per-
formance rankings of all three products, without neglecting representativeness errors – to validate the SMAP
landscape FT product. Performance rankings are obtained for nine sites at northern latitudes. We also investigate
differences between using air or soil temperatures to estimate FT state, and between using morning (6 AM) or
evening (6 PM) estimates. Overall, at most sites, the SMAP product or in-situ FT measurement is ranked first, and
the model FT product is ranked last (although rankings vary across sites). These results suggest SMAP is adding
value to model simulations, providing higher-accuracy estimates of landscape FT states compared to models and,
in some cases, even in-situ estimates, when representativeness errors are properly accounted for in the validation
analysis.
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1. Introduction

The landscape freeze/thaw (FT) state at high latitudes is an im-
portant land surface state variable with impacts at local, regional and
global scales. Locally, the period in which the landscape is thawed
bounds the growing season and phenological cycles of vegetation and
local ecosystems. Regionally, FT state constrains available soil
moisture, which controls surface fluxes of heat and moisture into the
atmosphere. In turn, surface fluxes partially control the formation of
clouds and modulate regional weather systems (Betts et al., 2001).
Since the soil storage has considerable ‘memory’ of comparatively rapid
atmospheric anomalies (Katul et al., 2007; Koster and Suarez, 2001;
McColl et al., 2017b, 2017a; Seneviratne et al., 2006), the corre-
sponding anomalies in soil moisture and its FT state can be imprinted
on surface fluxes over a much longer period, with implications for land-
atmosphere coupling and weather prediction. Finally, at global scales,
the long-term thawing of permafrost and associated release of carbon
dioxide and methane may have significant implications for future
global climate (Grosse et al., 2016; Schuur et al., 2015). It is therefore
critical to monitor FT state at high latitudes.

The most viable option for monitoring FT state at continental scales
is by using microwave satellite observations. Microwave measurements
can be made regardless of solar illumination or the presence of clouds.
Both passive and active microwave observations have been used in
previous studies to estimate FT state globally. In particular, FT state has
been estimated using passive observations from sensors including the
Aquarius/SAC-D satellite (Brucker et al., 2014; Le Vine et al., 2007; Roy
et al., 2015), the Soil Moisture and Ocean Salinity (SMOS) satellite
(Kerr et al., 2010; Rautiainen et al., 2016), Scanning Multichannel
Microwave Radiometer (SMMR) and Special Sensor Microwave Imager
(SSM/I) (Kim et al., 2011, 2012) and others. Most recently, NASA's Soil
Moisture Active Passive (SMAP) mission launched in January 2015 and
provides retrievals of landscape FT state (Derksen et al., 2017; Dunbar
et al., 2016; Entekhabi et al., 2010).

Satellite observations of landscape FT state must be validated
against ground observations prior to use. Error estimates are also re-
quired if FT estimates are to be assimilated into land-surface models
(Farhadi et al., 2014). Previous validation studies typically directly
compare satellite FT retrievals with FT estimates obtained from point-
scale in-situ station measurements of air or soil temperature (e.g.,
Colliander et al., 2012; Derksen et al., 2017; Kim et al., 2011; Podest
et al., 2014; Zhang et al., 2003). Differences between the satellite FT
retrieval and the in-situ point estimate are attributed to errors in the
satellite product. However, differences also occur due to differences in
the spatial scale of the satellite and in-situ estimates (Roy et al., 2017).
A satellite typically measures a spatial average over an area on the
order of 102–104 km2, several orders of magnitude larger than the area
measured by an in-situ station. The spatial average of landscape FT
state over 102–104 km2 of a typically heterogeneous land surface may
differ substantially from the FT state at a single point within the do-
main. Therefore, even if a satellite has no measurement error, there will
likely still be substantial differences between satellite and in-situ esti-
mates of FT state. These differences can be thought of as errors in the in-
situ estimate – often referred to as “representativeness” errors – caused
by the in-situ estimate's undesirably small measurement scale. Aver-
aging over multiple in-situ estimates in the domain will reduce re-
presentativeness errors, but the difficulties of installing and main-
taining in-situ stations at high latitudes typically means relatively few
in-situ stations are available for comparison. In addition, the in-situ
measurements themselves may be flawed, either due to instrument
performance deficiencies near the zero degree threshold, or due to the
installation depths of instruments in standard soil monitoring networks
(Williamson et al., in press). Overall, this implies that attributing dif-
ferences between satellite and in-situ estimates of FT state (or any other
variable) solely to errors in the satellite product will substantially
overestimate the error in the satellite product, since in-situ station

errors will be incorrectly classified as satellite measurement errors.
A general solution to this problem – triple collocation (TC) – was

provided by Stoffelen (1998). TC is a technique for validating satellite
observations and model estimates using in-situ measurements, without
ignoring representativeness errors. It has been widely adopted in vali-
dating satellite retrievals of variables including soil moisture (e.g.,
Draper et al., 2013; Gruber et al., 2016), precipitation (e.g.,
Alemohammad et al., 2015), ocean surface wind speed (e.g., McColl
et al., 2014; Vogelzang et al., 2011), and many others. However,
complications arise when applying TC to validating satellite estimates
of landscape FT state. TC requires that errors in the satellite, model and
in-situ estimates must be uncorrelated with each other, and with the
(unknown) true landscape FT state. For a binary variable such as
landscape FT state, these assumptions are both strongly violated
(McColl et al., 2016), resulting in substantial biases in the TC error
estimates. To circumvent this problem, McColl et al. (2016) introduced
a variant of TC that can be applied to binary and categorical variables –
called categorical triple collocation (CTC) – without resulting in biases
in the resulting error estimates. They provided a proof-of-concept de-
monstration of CTC, using it to validate landscape FT estimates, derived
from the NASA/SAC-D Aquarius satellite, Canadian Meteorological
Center (CMC) surface analysis, and surface measurements from a net-
work of western Canadian field sites. The results showed that, at most
sites, the in-situ observations exhibited the lowest accuracy compared
to the model and satellite estimates, demonstrating the influence of
representativeness errors on the in-situ observations.

In this study, we apply CTC to the validation of the SMAP FT pro-
duct over a range of sites at high latitudes. In Section 2, we briefly
review CTC, describe the different FT products used in this study, and
the different field sites. In Section 3, we present the results of the CTC
validation analysis at each of the field sites, compare the results with
previous studies, and consider limitations of our analysis. We present
conclusions from our analysis in Section 4.

2. Methods

In this section, we review CTC and describe the datasets and field
sites used to validate the SMAP FT product.

2.1. Categorical triple collocation (CTC)

We begin by briefly reviewing CTC, as presented in McColl et al.
(2016). CTC assumes an error model of the form

= +X T εi i

where Xi is an observation from the ith measurement system (model,
satellite and in-situ), T is the unknown true value and εi is a random
error. The observations Xi and truth T are binary variables and can take
on values in the set {−1, 1} only, i.e.,

= ⎧
⎨⎩−

T 1, if frozen
1, otherwise

and similarly for Xi. The errors εi are therefore dependent on the value
of T (to ensure that Xi remains in the set {−1, 1}), and can take on
values in the set {−2, 0, 2} only. In classical TC, it is assumed that the
errors εi are uncorrelated with each other, and with T. Based on these
assumptions, expressions for error metrics can be obtained from the
sample covariance matrix Cov(Xi,Xj), estimated from observations,
without assuming any of the three measurement systems are error-free.

However, the errors are dependent on T in the binary case, meaning
the errors are correlated with T. Furthermore, since errors from all three
measurement systems are correlated with T, they are correlated with
each other. Therefore, both key assumptions of classical TC are auto-
matically violated when it is applied to binary variables. We require an
alternative to classical TC that does not make this assumption. Rather
than assuming errors between measurement systems are uncorrelated
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with each other and with T, CTC makes a weaker assumption: that the
errors are conditionally independent, i.e., Pr(εi, εj|T) = Pr (εi|T) Pr
(εj|T), where Pr(X|Y) refers to the probability of X occurring, condi-
tioned on Y. This weaker assumption is not automatically violated when
applied to binary variables. Based on this weaker assumption, McColl
et al. (2016) demonstrated that the sample covariance matrix Cov
(Xi,Xj) can be decomposed to obtain performance rankings of the three
measurement systems with respect to their balanced accuracies, a
performance metric closely related to the simple accuracy metric. More
specifically, the balanced accuracy is defined as

= +π ψ η1
2

( )

where ψ is the measurement sensitivity (varying between zero and one,
and is higher when there are fewer false negatives) and η is the mea-
surement specificity (also varying between zero and one, and is higher
when there are fewer false positives). In contrast, the simple accuracy
(which also varies between zero and one) is the proportion of classifi-
cations that are correct. To see the advantage of the balanced accuracy
over the simple accuracy, consider the case of a hypothetical satellite
retrieval of FT state that always classifies all regions as ‘thawed’. This
hypothetical retrieval has no physical basis and should receive poor
performance estimates. However, in some parts of the world, the
landscape is thawed for nearly the entire year; in these regions, the
hypothetical FT retrieval will receive a relatively high performance
estimate when the simple accuracy metric is used. In this case, the re-
latively high performance estimate is unjustified, and an unwanted
artifact of the simple accuracy metric. In contrast, the balanced accu-
racy will more heavily penalize the hypothetical FT retrieval when it
incorrectly classifies the landscape during the limited time it is frozen.
This will result in a lower performance estimate compared to the simple
accuracy metric, and better reflects the actual performance of the re-
trieval.

Full details of the CTC algorithm are given in McColl et al. (2016),
but it can be summarized as follows:

1. Estimate the sample 3 × 3 covariance matrix Qij ≡ Cov(Xi,Xj) from
the observations X1, X2, X3.

2. Estimate = ⎡

⎣
⎢

⎤

⎦
⎥ =
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/
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12 13 23

12 23 13

23 13 12

from the sample covariance

matrix.
3. Sort w in descending order to obtain rankings. For example, if

w2 > w1 > w3, then measurement system 2 has the best perfor-
mance with respect to π, followed by measurement system 1, with
measurement system 3 exhibiting the poorest performance.

CTC provides relative performance rankings of the three measure-
ment systems with respect to π, but is not able to provide absolute
estimates of π for each system. This is the price paid for relaxing two
key assumptions of classical TC so that TC can be applied to binary and
categorical variables. In addition, like any validation analysis, the CTC
performance ranking is subject to sampling error based on sample size.
In this study, we obtain sampling error estimates by performing boot-
strapping (see Section 2.2.3).

2.2. Data

In this section, the satellite, in-situ, and model FT products used in
the analysis are described.

2.2.1. SMAP data
Launched in January 2015, SMAP provided collocated radar (ac-

tive) and radiometer (passive) L-band observations, with an approx-
imate repeat time of three days, consisting of ascending (6 PM) and

descending (6 AM) half-orbits. The radar ceased operation after
11 weeks due to an instrument anomaly, but the radiometer continues
to function nominally; we therefore use SMAP radiometer observations
in this study. The SMAP radiometer has a resolution of approximately
362 km2 corresponding to the domain over which the radiometer an-
tenna records half of the power it receives. The data are gridded onto a
92 km2 grid with polar projection using Backus-Gilbert optimal inter-
polation (Chaubell et al., 2016b, 2016a), and converted to a landscape
FT state estimate, in a process described below. In this validation study,
we use observations spanning the first full annual cycle of SMAP ob-
servations (1 April 2015 to 31 March 2016).

The SMAP FT product is acquired from the enhanced Level-3 (L3)
product (Dunbar et al., 2017). It provides a daily composite of FT state
for land areas above 45°N at 6 AM and 6 PM. The SMAP FT product is
derived from the normalized polarization ratio (NPR), defined as

= −
+

NPR T T
T T

BV BH

BV BH

where TBV and TBH are the vertically- and horizontally-polarized
brightness temperatures. This ratio is further normalized to obtain

= −
−

FF NPR NPR
NPR NPRNPR

th

fr th

where NPRfr is a reference value of NPR corresponding to a frozen state,
and NPRth is a reference value corresponding to a thawed state. The
frozen reference value is estimated as the average of the ten lowest NPR
values over January and February 2016; the thawed reference is esti-
mated similarly, using the ten highest NPR values over July and August
2015 (Derksen et al., 2017). Finally, the landscape FT estimate is ob-
tained by thresholding FFNPR:

= ⎧
⎨⎩

≤
− >

X
FF t
FF t

1, if Δ( )
1, if Δ( )

AM PM NPR

NPR
1

/

where Δ(t) is fixed at 0.5 (optimization is possible, but not applied in
this version of the product), X1 = 1 means ‘frozen’ and X1 = − 1
means ‘thawed’, and X1

AM/PM is estimated using AM/PM observations,
respectively (Derksen et al., 2017; Rautiainen et al., 2016). The SMAP
FT product is estimated separately using only AM brightness tempera-
ture observations, and again using only PM observations.

Like all satellite-derived FT estimates, the SMAP retrievals contain
contributions from sources beyond the soil FT state, which partially
confound the retrieval. These sources include vegetation and snow
cover. Rather than attempt to correct for such sources – a difficult task
in an environment with incomplete observations – the FT retrievals are
typically interpreted as indicative of ‘landscape’ FT state, which in-
corporates contributions from snow cover and vegetation into its defi-
nition, rather than strict ‘soil’ FT state. Although there is influence by a
wet snow cover (Derksen et al., 2017; Roy et al., 2015), the SMAP L-
band observations penetrate deeper into the soil and are expected to be
less impacted by snow cover and vegetation compared to retrievals
based on higher-frequency microwave observations (such as the sa-
tellite Ka-band radiometer measurements used in Kim et al., 2012).
Unless otherwise specified, we define FT state as the landscape FT state
in this manuscript.

2.2.2. In-situ data
In-situ station observations of surface air temperature (Ta) and near

surface soil temperature (Ts; measured at 5-cm depth) are obtained
from nine stations spanning Canada, Finland, Eastern Siberia, and
Alaska. The sites span a range of landcover types (further details are
provided in Table 1). The station air- and soil-temperature observations
are translated to landscape FT estimates as follows. Within a given
SMAP pixel, multiple in-situ measurements are averaged. The number
of in-situ observations averaged at each site is given in Table 1. For
station air temperatures, the in-situ FT product is defined according to
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= ⎧
⎨⎩

≤
− >

°

°
X T

T
T

( )
1, if 0 C
1, if 0 C

,AM PM
a

a

a
2

/

where Ta refers to the averaged air temperature across in-situ mea-
surement stations within the SMAP pixel. For station soil temperatures,
the in-situ FT product is defined according to

= ⎧
⎨⎩

≤
− >

°

°
X T

T
T

( )
1, if 0 C

1, if 0 C
,AM PM

s
s

s
2

/

where Ts refers to the averaged soil temperature across in-situ mea-
surement stations within the SMAP pixel. Each in-situ measurement has
strengths and weaknesses with respect to sensitivity to actual landscape
FT state. While both soil temperatures and air temperatures are corre-
lated with landscape FT state, X2

AM/PM(Ts) has a more direct link to soil
FT state, so measurement errors in X2

AM/PM(Ts) are expected to be lower
compared to X2

AM/PM(Ta). However, the measurement footprint of
X2

AM/PM(Ts) is smaller than that of X2
AM/PM(Ta) – the spatial correlation

length of soil temperatures is substantially smaller than that of air
temperatures – so X2

AM/PM(Ta) is expected to have smaller representa-
tiveness errors when measuring landscape FT state over larger scales
relevant to the validation of satellite observations. As discussed further
in Section 3.1, uncertainties also arise related to how Ta and Ts capture
freeze and thaw transition events. For example, soil temperatures in
spring typically remain frozen for a number of days after the onset of
snow melt. There is evidence, however, that SMAP radiometer mea-
surements respond to the immediate onset of snow melt, triggering
‘thaw’ retrievals in the case of wet snow over frozen soil (Derksen et al.,
2017). In this scenario, there will be better agreement between SMAP
FT retrievals and X2

AM/PM(Ta), even though the near surface soil layer
remains frozen.

2.2.3. Model data
The model-derived FT estimate is obtained from 0 to 10 cm surface

temperatures (estimated as the average of skin temperature and 10 cm
depth soil temperature) from the NASA Global Modeling and
Assimilation Office (GMAO) GEOS-5 Nature Run product (Reichle et al.,
2016) according to

= ⎧
⎨⎩

≤
− >

°

°
X

T
T

1, if 0 C
1, if 0 C

,AM PM s

s
3

/

The model spatial resolution is 92 km2.
The three datasets were temporally- and spatially-collocated at each

site, using nearest-neighbor sampling for the spatial collocation, and
the in-situ air and soil temperatures as the temporal reference with a
maximum temporal collocation window of 1 day. CTC was applied to
the sample triplets at each site to obtain performance rankings. We
performed bootstrapping (Efron and Tibshirani, 1994) using 1000 re-
plicates, to quantify the impact of sampling error on the estimated
rankings, as in McColl et al. (2016). Bootstrapping is a commonly-used,
non-parametric technique for estimating sampling error. For a given
site, with N available sample triplets (call this set S0), we randomly
draw N triplets from those available with replacement (call this set S1). S0

and S1 will almost certainly be different: some of the triplets in S1 will
likely be repeated, and therefore S1 will likely also exclude some triplets
from S0. The process is repeated many times (in our case, 1000 times),
generating bootstrapped sets of sample triplets S1, …, S1000. We per-
form CTC on each set S1, …, S1000 and obtain 1000 different perfor-
mance rankings. Differences between estimated performance rankings
across sets S1,…, S1000 are attributed to sampling error. If the estimated
CTC performance rankings across sets S1,…, S1000 are all identical, then
we estimate zero sampling error. On the other hand, if the estimated
performance rankings across sets differ substantially, then we estimate
large sampling error.

3. Results and discussion

Before presenting the CTC validation results, we aim to better un-
derstand the differences between the FT products used in this study. We
investigate differences between in-situ products derived from air tem-
peratures (X2(Ta)), and those derived from soil temperatures (X2(Ts));
and investigate differences between estimated landscape FT state using
morning (6 AM) or evening (6 PM) measurements. Finally, we use CTC
to estimate performance rankings of the satellite (X1), in-situ (X2) and
model (X3) FT state estimates across the nine high-latitude study sites.

3.1. Differences between in-situ air and soil temperature FT products

We first examine differences between the in-situ air and soil tem-
perature FT products (X2(Ta) and X2(Ts), respectively). Two re-
presentative examples are shown in Fig. 1. The site at Sodankyla ex-
hibits significant differences between the seasonal cycles of Ts and Ta.
Soil temperatures rarely drop below freezing, resulting in relatively few
and relatively short frozen periods (Fig. 1a). In contrast, air tempera-
tures follow a clear seasonal cycle and spend a considerable period of
the year below zero, resulting in a much longer estimated frozen period
(Fig. 1b). Qualitatively similar patterns are observed (not shown) at
Baie James, Chersky, and the two BERMS stations (OA and OBS). In
contrast, at the Cambridge Bay site, relatively few differences are ob-
served between soil and air temperatures, and their respective FT
products (Fig. 1c and d). Similar behavior is observed at the Imnavait
site (not shown).

There are many possible reasons for differences in the seasonal
cycles of Ta and Ts. One explanation could be the effects of forest and
vegetation cover on snow cover. In the winter, snow insulates the soil,
increasing Ts relative to Ta (Bartlett et al., 2004). There is considerable
variability in snow cover across climates, biomes and topography.
However, in forested areas, reductions in snow accumulation due to
canopy interception are often exceeded by reductions in snow ablation
due to canopy shading (Varhola et al., 2010). This results in a net in-
crease in snow cover in some forests, compared to equivalent non-
forested regions. Therefore, we might expect that at forested or vege-
tated sites Ts > Ta during the winter, but not at barren or sparsely
vegetated sites. This is what we see in the in-situ observations: the sites
at which Ta and Ts follow similar seasonal cycles (Cambridge Bay and

Table 1
Information for the study datasets and sites (Derksen et al., 2017). At each site, in-situ observations were averaged across multiple measurement stations.

Site ID Latitude Longitude Region Vegetation type Number of stations in average

Kenaston 51.41°N 106.5°W Saskatchewan, Canada Croplands 35
BERMS old aspen (OA) 53.63°N 106.2°W Saskatchewan, Canada Deciduous Forest 3
BERMS old black spruce (OBS) 53.99°N 105.12°W Saskatchewan, Canada Coniferous Forest 2
Sodankyla 67.36°N 26.64°E Finland Coniferous Forest 15
Saariselka 68.38°N 27.42°E Finland Grasslands 4
Chersky 68.65°N 161.65°E Eastern Siberia, Russia Deciduous Needleleaf Forest 6
Imnavait 68.62°N 149.30°W Alaska, USA Barren/Sparse 1
Baie-James 53.41°N 75.013°W Quebec, Canada Coniferous Forest 2
Cambridge Bay 69.15°N 105.11°W Northwest Territories, Canada Barren/Sparse 1
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Fig. 1. (a) Time series plots at Sodankyla station of
6 AM in-situ station air temperatures (corresponding
to SMAP's descending overpass). Boxes above the
time series plot show the inferred FT product X2(Ta),
estimated by thresholding the air temperature time
series with respect to the given FT threshold. Light
brown, blue and white boxes signify thawed, frozen
and missing data, respectively. (b) Same as (a), ex-
cept showing 6 AM in-situ station soil temperatures
(corresponding to SMAP's descending overpass), and
corresponding FT product X2(Ts). (c) Same as (a),
except at the Cambridge Bay site. (d) Same as (b),
except at the Cambridge Bay site. (For interpretation
of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2. (a) Time series plots at the Baie-James
station of 6 PM (corresponding to SMAP's as-
cending overpass) NPR. Boxes above the time
series plot show the inferred FT product X1

PM,
estimated by thresholding the NPR time series
with respect to the given FT threshold (chosen to
be equivalent to thresholding FFNPR at a value of
0.5). Light brown, blue and white boxes signify
thawed, frozen and missing data, respectively. (b)
Same as (a), except using 6 AM NPR (corre-
sponding to SMAP's descending overpass) and the
inferred FT product X1

AM. (c) Same as (a), except
using 6 PM model soil temperatures and the in-
ferred FT product X3

PM. (d) Same as (a), except
using 6 AM model soil temperatures and the in-
ferred FT product X3

AM. (e) Same as (a), except
using 6 PM in-situ station soil temperatures and
the inferred FT product X2

PM(Ts). (f) Same as (a),
except using 6 AM in-situ station soil tempera-
tures and the inferred FT product X2

AM(Ts). (For
interpretation of the references to color in this
figure legend, the reader is referred to the web
version of this article.)
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Imnavait) are both sparsely vegetated, whereas Ts > Ta during the
winter at the other (forested or relatively well-vegetated) sites. If this
explanation is correct, X2(Ts) clearly provides a more accurate estimate
of soil FT state compared to X2(Ta).

However, alternative explanations exist that yield the opposite
conclusion. While X2(Ts) is the ultimate measure of soil FT state at a
single point, over the scale of a satellite footprint, representativeness
errors in X2(Ts) may be substantial. This is because the FT state at a
point is not necessarily an accurate estimate of the FT state averaged
over a larger area (the quantity observed by satellites), particularly for
heterogeneous variables like landscape FT state. While Ta has a weaker
physical relation to soil FT state compared to Ts, it has a longer cor-
relation length, and therefore integrates information over a larger
footprint that more closely matches satellite observations. It may,
therefore, be less affected by representativeness errors compared to Ts,
implying that X2(Ta) may provide a more accurate estimate of land-
scape FT state compared to X2(Ts).

These are only two plausible hypotheses for observed differences in
the seasonal cycles of Ta and Ts. There are insufficient data to defini-
tively choose one over the other; we simply highlight these differences
and stress their importance in interpreting the validation results to
follow (and in other satellite FT validation studies).

3.2. Differences between AM and PM FT products

We next consider differences between FT products estimated with
morning (6 AM) and evening (6 PM) observations. For the in-situ pro-
ducts, the greatest differences occur when using air temperatures
compared to soil temperatures, with air temperatures considerably
lower at 6 AM compared to 6 PM. This results in a significantly

extended frozen period when estimating an in-situ FT product using
6 AM air temperatures rather than 6 PM temperatures (not shown). The
difference is much less pronounced when using soil temperatures in-
stead (Fig. 2e and f show representative examples from the Baie-James
site), probably due to the soil's substantial thermal inertia and snow-
pack thermal insulation.

For satellite FT products, the differences are less pronounced, al-
though the frozen period tends to be longer when using AM (des-
cending) observations compared to PM (ascending). The most pro-
nounced differences occur in the spring transition (Fig. 2a and b show
representative examples from the Baie-James site). Derksen et al.
(2017) found better agreement between SMAP retrievals and ground
observations for PM observations, compared to AM. This is attributed to
ephemeral refreezing events that can occur overnight, which are not
observed by SMAP or soil temperature products, and are only seen in air
temperature products, which can respond to short-term forcing.

Finally, since the model FT product is based on soil temperature, the
differences between using AM and PM temperatures are relatively small
(Fig. 2c and d).

3.3. CTC performance rankings

Given the known differences in FT products estimated using AM and
PM air temperatures and soil temperatures, we now present the CTC
performance rankings of the different products at each site (Figs. 3–5).
There is considerable variation between sites and products. The results
also vary depending on the choice of products used in the analyses, and
the timing of the observations (AM or PM). Imnavait is the only site
where the same FT product (in this case, the satellite product) is con-
fidently ranked first for all combinations of analyses (Fig. 3). The

Fig. 3. Maps of the measurement system ranked first
at each site using CTC with four different sets of
measurements: (a) X1

PM (i.e., based on SMAP PM ob-
servations), X2

PM(Ta) (i.e., based on in-situ PM air
temperature observations) and X3

PM (i.e., based on PM
model output); (b) X1

AM, X2
AM(Ta) and X3

AM; (c) X1
PM,

X2
PM(Ts) and X3

PM; (d) X1
AM, X2

AM(Ts) and X3
AM. Since

the top-ranked measurement system may vary across
the 1000 bootstrap replicates at any given site, we
calculate the proportion of bootstrap replicates
ranking the satellite, in-situ and model FT estimates
first, and map these to a red–green–blue color space,
respectively. For example, if the satellite is ranked the
highest in all 1000 bootstrapped performance rank-
ings at a site, it is colored blue; if the satellite is ranked
first in 50% of the bootstrapped rankings, and the
model is ranked first in the other 50%, it is colored
purple. (For interpretation of the references to color in
this figure legend, the reader is referred to the web
version of this article.)
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variability is expected given the differences in FT products outlined in
Sections 3.1 and 3.2. Furthermore, some of the observed variability in
performance rankings is likely attributable to differences in the number
of in-situ measurement stations present at each site (Table 1). All else
being equal, a site with more measurement stations would be expected
to have lower representativeness errors, resulting in a potentially
higher performance ranking for the in-situ product.

Despite this variability, some broad conclusions can be drawn. First,
either the satellite or in-situ product is ranked first in most cases
(Fig. 3). The only exceptions to this are the BERMS OBS site when air
temperatures and AM observations are used (Fig. 3b), and the Cam-
bridge Bay site when soil temperatures and AM observations are used
(Fig. 3d). Second, the model FT product is most likely to be ranked last,
particularly for the case where soil temperatures and AM observations
are used to derive FT products (Fig. 5d). However, this result is more
dependent on choices made in defining the FT product (for example, in
Fig. 5a, the model is not clearly ranked last at the majority of sites) and
therefore more uncertain.

These results are in contrast to a previous study, which found in-situ
observations frequently displayed the poorest performance (McColl
et al., 2016). However, in that study, in-situ observations were being
used to validate a satellite product based on Aquarius observations at a
resolution of ~1002 km2, compared with a resolution of 362 km2 in this
study. Furthermore, a single in-situ measurement station was used to
validate each Aquarius observation in McColl et al. (2016); in contrast,
in this study, at most sites, multiple in-situ measurement stations are
averaged before comparing with SMAP observations. Therefore, the
representativeness errors present in the in-situ observations in McColl
et al. (2016) are expected to be significantly larger. The higher spatial

resolution of the SMAP observations, and the use of averaged multiple
in-situ measurements, allows for a more reasonable comparison be-
tween the satellite and in-situ measurements.

Our analysis is subject to several limitations. First, the number of
field sites in this study is relatively small, due to the difficulty of
maintaining field sites at high latitudes. This problem is compounded
by the fact that FT state is heterogeneous both horizontally (e.g., due to
variations in land cover and topography) and vertically (e.g., due to
variations in soil, snow and vegetation). This is a continuing challenge
for all satellite FT validation studies. A sustained effort to establish and
maintain sites under difficult operating conditions is required. Second,
we have used one year of observations, a relatively small sample size,
limited by the availability of SMAP observations. We have performed
bootstrapping to estimate effects of sample size on the analysis; in most
cases, bootstrapping shows that we are able to cleanly identify perfor-
mance rankings in spite of the low sample size, with some exceptions.
This problem will be mitigated as the satellite record grows with time.
Third, for CTC to provide unbiased performance rankings, we require
that errors in the satellite, model, and in-situ FT products are con-
ditionally independent of one another; this assumption may not always
hold. However, while assumptions of zero error cross-correlation are
not always valid in other domains (for instance, using triple collocation
to estimate errors in soil moisture products (Yilmaz and Crow, 2014)),
the assumption of conditional independence required by CTC is con-
siderably weaker than the assumptions of classical triple collocation.
We therefore expect this assumption to be violated to a lesser degree
compared with the assumptions of classical triple collocation.

Fig. 4. Similar to Fig. 3 for the measurement
system ranked second at each site using CTC.
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4. Conclusions

Satellite observations of FT state are essential for monitoring and
predicting the response of high-latitude environments to a changing
climate. In this study, we validated the performance of the SMAP FT
product through comparison with in-situ air and soil temperatures, and
with model soil temperatures. In a departure from most other FT vali-
dation studies, we did not assume that representativeness errors – im-
plicit errors in in-situ products when using the in-situ point estimate to
represent a large-scale average – were zero, a common but often sub-
stantially incorrect assumption. To avoid this assumption, we used CTC
(a variant of triple collocation specifically designed for use with binary
and categorical variables) to estimate performance rankings for the
model, satellite, and in-situ FT products. While there was considerable
variation across sites, we observed that, at most sites, either the SMAP
or in-situ FT product had the highest performance ranking. In contrast,
at most sites, the model product had the poorest performance ranking.
These results suggest that SMAP FT estimates are adding value com-
pared to model FT estimates. They also suggest that comparing in-situ
FT estimates with SMAP FT retrievals (362 km2) is more justified than
comparisons with coarser-resolution satellite FT products (such as
~1002 km2 Aquarius retrievals) used in previous studies, since higher
resolution FT products resolve more of the FT spatial variability.
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