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Abstract The soil water content profile is often well correlated with the soil moisture state near the sur-
face. They share mutual information such that analysis of surface-only soil moisture is, at times and in con-
junction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines
the characteristic length scale, or effective depth Dz, of a simple active hydrological control volume. The vol-
ume is described only by precipitation inputs and soil water dynamics evident in surface-only soil moisture
observations. To proceed, first an observation-based technique is presented to estimate the soil moisture
loss function based on analysis of soil moisture dry-downs and its successive negative increments. Then, the
length scale Dz is obtained via an optimization process wherein the root-mean-squared (RMS) differences
between surface soil moisture observations and its predictions based on water balance are minimized. The
process is entirely observation-driven. The surface soil moisture estimates are obtained from the NASA Soil
Moisture Active Passive (SMAP) mission and precipitation from the gauge-corrected Climate Prediction Cen-
ter daily global precipitation product. The length scale Dz exhibits a clear east-west gradient across the con-
tiguous United States (CONUS), such that large Dz depths (>200 mm) are estimated in wetter regions with
larger mean precipitation. The median Dz across CONUS is 135 mm. The spatial variance of Dz is predomi-
nantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the
form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale.

1. Introduction

While surface soil moisture constitutes only a fraction of the total storage of terrestrial water (Gleeson et al.,
2015), it rests at a critical boundary between the atmosphere and land. Hence, it plays a disproportionately
large role in the water cycle (McColl et al., 2017a). Soil moisture affects the land-atmospheric coupling
through partial control on the evaporation of precipitation water accumulated over time (Schwingshackl
et al., 2017; Seneviratne et al., 2010) and therefore influencing the probability of subsequent precipitation
(Tuttle & Salvucci, 2016). Soil moisture also influences crop and plant growth, dynamics of soil respiration
(Rosenzweig et al., 2002), and modulates drought conditions (Koster, 2004). Most significantly, it affects
evapotranspiration (ET), which serve as the link between the global water and energy cycles (Fatichi et al.,
2016).

In vegetated regions, and more specifically water-limited areas, the amount and rate of plant transpiration
are predominantly affected by root-zone soil moisture availability (Vivoni et al., 2008)—that is the soil mois-
ture profile down to tens of centimeters within below the land surface. However, the exact depth is depen-
dent on the ecosystem, plant type, and root distribution (Kurc & Small, 2007).

At global scales, remote sensing measurements of root-zone soil moisture are minimal. Low-frequency radar
observations, 430 MHz, by the NASA Airborne Microwave Observatory of Subcanopy and Subsurface (Air-
MOSS) (Tabatabaeenejad et al., 2015) have recently retrieved and reported root-zone moisture at regional
scales (100 3 25 km) over North America. Overall, however, within the past few decades, technological
advancements in microwave remote sensing have enabled frequent spaceborne estimates of surface—or
top 50 mm—soil moisture. Recent satellite missions such as the European Space Agency’s Soil Moisture
Ocean Salinity (SMOS) (Kerr et al., 2001) and the NASA Soil Moisture Active Passive (SMAP) (Entekhabi et al.,
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2010) mission continue to provide global soil moisture coverage at about 40 km spatial resolution from
daily to 3 day intervals.

1.1. Surface and Root-Zone Soil Moisture
Large scale weather forecasting and climate modeling efforts typically rely on deeper soil moisture informa-
tion to more accurately describe land-atmosphere coupling, evapotranspiration, along with heat and water
exchanges (Dirmeyer, 2000; Koster & Suarez, 2003). To overcome limitations imposed by the lack of
observation-based deeper soil moisture information, a wide range of land-surface modeling and assimila-
tion techniques have been developed to link surface observations to deep soil moisture. These methods
span a variety of techniques including semiempirical low-pass filtering of time series soil moisture (Albergel
et al., 2008; Wagner et al., 1999) and data assimilation approaches (Kumar et al., 2009; Reichle et al., 2007,
2008; Sabater et al., 2007). Applicability of these methods rests on accurate model parameterization, soil tex-
ture and vegetation cover, as well as atmospheric forcing.

Due to direct exposure to precipitation and evaporation processes, surface soil moisture dynamics—com-
pared to deeper soil moisture—are generally more rapid. However, it is physically linked via diffusive pro-
cesses to the deeper soil moisture profile and its temporal dynamics do contain some information about
the temporal evolution of deeper soil moisture. The exact nature of this link is complex, and a function of
climate, soil texture, as well as land cover type and use (Mahmood & Hubbard, 2007). With the exception of
very dry soil conditions (Hirschi et al., 2014) surface soil moisture is strongly correlated with deeper layers
(Albergel et al., 2008; Ford et al., 2014; Qiu et al., 2014). While root-zone soil moisture is usually the dominant
control on surface fluxes, rather than surface soil moisture, the correlation between surface soil moisture
and root-zone soil moisture leads to a strong relationship between surface soil moisture and surface fluxes
in many cases (Qiu et al., 2016).

To demonstrate the correlation, Figure 1 shows the explained-variance, R2, between surface (5 cm) and
root-zone soil moisture, i.e., sensors placed at 10, 20, 50, and 100 cm depths. Data from the US Climate Ref-
erence Network (USCRN) (Bell et al., 2013) in situ networks over CONUS are used to determine the statistic
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Figure 1. Explained-variance between surface 5 cm and root-zone (plots a through d for 10, 20, 50, and 100 cm) soil mois-
ture from the USCRN in situ networks over a 1 year period. R2 is highest between 5 and 10 cm soil moisture but degrades,
at a variable rate, with respect to deeper depths.
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for a 1 year period (2015). Across CONUS, for the 5 and 10 cm depths R2 is largest, and close to 1. With
respect to deeper sensor depths, however, it gradually degrades, but at variable rates due to differences in
soil texture and climate. For parts of southeast US, the correlation coefficient is still large R2> 0.5 down to a
depth of 50 cm.

1.2. Hydrological Length Scale
As stated in the previous section, surface and deeper soil moisture dynamics are often correlated and
convey mutual information. Thus, analysis of surface-only soil moisture is, at times, reflective of deeper
soil fluxes and dynamic. Based on this understanding, a water balance equation can be formulated
which describes an effective and active homogenous storage volume characterized by precipitation
inputs, P tð Þ [L T21], and water storage dynamics as evident in SMAP surface soil moisture observations,
hSMAP m3m23ð Þ,

Dz
dhSMAP

dt
5P tð Þ2 Q hSMAPð Þ (1)

Q hSMAPð Þ [L T21] is the soil moisture hydrologic divergence of water from the control volume. It encapsu-
lates total moisture losses from the control volume due to evapotranspiration, ET hð Þ [L T21], and percolation
into deeper soil, D hð Þ [L T21], as reflected by surface soil moisture dynamics.

In the water balance equation of (1), Dz [L] is defined as the unknown characteristic length scale of the con-
trol volume. It transforms volumetric water fraction (h) to a storage volume of water per unit area (depth) in
the landscape soil. The distinction is analogous to intensive and extensive variables in thermodynamics. The
value of an intensive variable, such as temperature, is independent from the size of the enclosing (balance)
control volume. Analogously, volumetric water content is an intensive variable. However, without a length
scale, it does not carry information about the amount of water within the system, nor can it be directly
applied to balancing input and output fluxes.

Extensive variables, such as mass or enthalpy, depend on the size of the balance control volume and more
directly relate to fluxes into and out of the system. In the case of hydrological water balance, the soil water
content has to be described in terms of an extensive variable—in volume per unit area or depth units—if it
is used in conjunction with water balance and precipitation and hydrologic losses. This is evident in the
mass balance relation in (1) with the inclusion of the length scale Dz.

Using precipitation information, SMAP surface soil moisture observa-
tions, and enforcing mass conservation in (1) this unique length scale
can be determined. Figure 2 shows a schematic representation of this
conceptualization and the control volume with respect to surface soil
moisture. Given input precipitation along with estimates of outgoing
losses due to percolation into deeper soil and evapotranspiration, a
unique length scale Dz exists where surface soil moisture dynamics
reflect deeper soil water content—Appendix A also includes a com-
plementary study in support of this feature using in situ profile soil
moisture data. In this context, the uniqueness of Dz refers to the fact
that, for a given region and over the period of study, a specific length
scale Dz can be determined which is in a function of soil and precipi-
tation characteristics.

Conceptually, Dz is analogous to the damping depth of diurnal tem-
perature waves within a soil layer (Dickinson, 1988; Hu & Islam, 1995).
This damping depth is a length scale dependent on two sets of prop-
erties: first, the soil’s thermal characteristics, namely thermal conduc-
tivity and heat capacity. The second is the frequency and periodicity
of external forcing—diurnal and seasonal input radiation. From a
hydrological dynamics perspective in the context of (1), estimates of
Dz reflect a length scale dependent on the soil hydraulic conductivity
and water storage potential—in general, mean soil moisture and
texture—as well as precipitation interstorm periods (forcing intervals)

ET(θ)

D(θ)

z

Δz

θ(z,t)

P(t)

0

P(t)

Surface
Soil Moisture θ

Figure 2. Schematic of conceptual control volume with depth Dz. This length
scale is dependent on soil properties (texture, hydraulic conductivity, etc.) as
well as precipitation, P(t), characteristics such that surface soil moisture dynam-
ics are also well correlated with total stored water content at this depth.
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and potential evaporation rates. Therefore, the degree of hydrological activity, reflected in precipitation and
mean soil moisture characteristics, will affect Dz.

Koster and Suarez (2001) demonstrated that, in the context of soil moisture memory and autocorrelation,
while temporal soil moisture dynamics can be more accurately described—either from observations or
models—an effective water storage or holding capacity is required. In relation to the system’s total sorted
water content [L], the effective holding capacity was estimated via calibration of a monthly water balance
equation, similar to (1). By applying a variance matching technique between surface soil moisture dynamics
and gravity-based total water content (Crow et al., 2017) also determined a suitable scale factor to evaluate
basin level annual water balance closure. Similar to Koster and Suarez (2001) and Crow et al. (2017), a hydro-
logic length scale is estimated in this study. However, unlike Koster and Suarez (2001), values of fluxes such
as evaporation are not required. And unlike Crow et al. (2017) gravity-based measurements of total soil
water storage are not required.

In this study, we focus on the estimating this hydrologic length scale using a data-driven approach leverag-
ing SMAP volumetric soil water content and precipitation data. In applying (1) to the estimation process,
the functional form of the hydrologic divergence, Q hSMAPð Þ must to be known. We seek to estimate this
function in a data-driven and nonparametric fashion. In section 2, we use the temporal sequences of
remotely sensed surface soil moisture to estimate this function and its state-dependence. An observation-
driven approach is presented to partially reconstruct Q hSMAPð Þ. The hydrological model in (1) considers only
vertical input and output of moisture. Over large scales (tens of kilometers) the vertical gains and losses are
assumed to dominate over lateral hydrologic exchanges. Additionally, the soil moisture remote sensing
community has historically attributed a 50 mm vertical support depth to soil moisture estimates from
L-band (1.4 GHz) radiometers. However, discussions surrounding Dz reflect a length scale characterizing a
hydrological system with knowledge of precipitation. Therefore, it can be different from the SMAP 50 mm
support depth defined for its estimates of volumetric water content.

With the above considerations in mind, we pose the following question: What is the characteristic length
scale of a simple hydrological system described only by precipitation inputs and surface soil water dynamics
evident in SMAP observations? We focus here on data and observation-driven approaches to enhance utility
of satellite remote sensing observation of soil moisture for water balance studies. Naturally, more complete
modeling and model-based assimilation techniques can be pursued but are not considered here: only soil
moisture and precipitation information are used.

To address the above question, two steps are taken. First, in section 2, we present a simple framework to
partially reconstruct the hydrologic divergence function by analyzing consecutive negative increments of
soil moisture—specifically during soil moisture dry-downs. Then, an optimization problem is formulated to
provide estimates of Dz over the Contiguous United States (CONUS) by minimizing the root-mean-squared
(RMS) difference between water balance-based estimates of soil moisture and SMAP soil moisture product.
This analysis will focus on May–September 2015 and 2016 (inclusive). In section 3, estimates of the charac-
teristic length scale are presented and its implications are discussed. The influence of precipitation, soil
moisture as well as soil properties on this length scale are also examined. Appendix A includes a comple-
mentary analysis in support of the relationship between surface soil moisture dynamics and total stored
water content at the length scale Dz, but based on multidepth in situ soil moisture observations only.

2. Materials and Methods

2.1. Soil Moisture and Precipitation Measurements
The SMAP Enhanced Radiometer-only surface soil moisture estimates (L3SM_P_E) (O’Neill et al., 2016), at a
9 km posting, are used in this analysis. Each 9 km data granule represents surface soil volumetric water con-
tent over a large (approximately 30–40 km) area corresponding to the half-power or 23 (dB) sampling area
of the SMAP antenna. Depending on latitude, SMAP soil moisture observations are available from daily to 3
day intervals. The SMAP project ensures the validity of soil moisture estimates, globally, via calibration and
validation efforts with respect to multiple in situ sensor networks (Chan et al., 2016). Only the descending,
or local ‘‘6 am,’’ soil moisture products are considered. This is due to uncertainties associated with model-
based predictions of evening soil and vegetation physical temperatures; these in turn will affect soil mois-
ture retrieval. It is important to note that the SMAP retrieval algorithm and soil moisture products
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(Entekhabi et al., 2010; O’Neill et al., 2016) assumes a semi-infinite dielectric medium characterized by
homogenous and uniform texture within the 50 mm soil layer. We extend the uniform soil texture assump-
tion to this analysis as well.

Surface precipitation estimates are obtained from the Climate Prediction Center’s Unified (CPCU) gauged-
based global daily precipitation (NCAR, 2017). CPCU precipitation is reprocessed from a 0.5 degree grid to
the SMAP 9 and 36 km grids and resampled to 6 hourly accumulations starting from 0600 local time—thus
concurrent with SMAP observations, when available.

SMAP soil moisture and CPCU precipitation data spanning May–September 2015 and 2016 over the contig-
uous United States (CONUS) are used. In all cases, pixels affected by radio frequency interference (RFI),
more that 1% water fraction, more than 7 kg m22 vegetation water content as well as those flagged as fro-
zen or snow covered are excluded from the analysis. Soil moisture quality and use-recommendation flags
are provided in the SMAP data files and help to minimize the impact of uncertainties associated with soil
moisture estimates.

Soil texture, in the form of sand and clay fractions, are also used to approximate the soil’s porosity as
/ 5 (sand 3 0.395) 1 (clay 3 0.482) 1 (1 2 sand 2 clay) 3 0.451. We use the same soil texture data set as
SMAP (Das, 2013).

2.2. Estimating the Soil Moisture Loss Function
In (1), estimates of volumetric soil moisture are available from SMAP and precipitation from the CPCU
gauge-corrected daily products. Note, however, to estimate Dz the water balance model of (1) must be
completed with knowledge of the hydrologic divergence function, Q hSMAPð Þ. Stochastic modeling of soil
moisture dynamics have proposed a variety of physics-based analytical forms for Q hSMAPð Þ (Feng et al.,
2012; Laio et al., 2001; Rodriguez-Iturbe & Porporato, 2007). However, at large scales their applicability
diminishes due to difficulties in parameterizing such models. An alternative method for estimating the
hydrologic divergence function from precipitation and soil moisture is to conditionally average the daily
precipitation amount according to the soil moisture status, as demonstrated by Salvucci (2001) with field
data and Tuttle and Salvucci (2014) with AMSR-E estimated of soil moisture.

In lieu of model-based approaches, we present an observation-driven method to estimate the loss function.
At larger spatial scales, increases in soil moisture are attributed to infiltrating precipitation and decreases
due to evapotranspiration and percolation into deeper soil. Thus, soil water losses are partially encoded in
the gradients of volumetric soil moisture content increments, especially dry-downs with zero infiltrating
precipitation in-between successive observations. For example, McColl et al. (2017b) estimated the time
scale of stage-II ET—water-limited regime—from SMAP-observed dry-downs. Here dry-downs are extracted
from the SMAP soil moisture time series by analyzing successive negative increments of volumetric soil
water content. A loss function and its dependence on the state variable (i.e., volumetric soil water content)
is then approximated by conditioning these negative increments on soil moisture itself. With SMAP alone,
the loss function is in units of time-increment decrease in hSMAP , i.e., (m3 m23 d21). Therefore, with no pre-
cipitation between successive observations the loss function becomes

L hSMAPð Þ5 E 2
Dh2

SMAP

Dtobs

����hSMAP

� �
(2)

where the increments are DhSMAP5hSMAP t11ð Þ2hSMAP tð Þ and

Dh2
SMAP5

DhSMAP DhSMAP < 0 and P tð Þ50

0 otherwise

(

where E[] is the expectation operator. Dtobs is the time difference, in days, between successive SMAP soil
moisture observations that yield a negative change, or loss, in moisture. Note that the loss function,
L hSMAPð Þ, defined in (2) is in units of volumetric water content per day [T21]. The total amount of loss in
(mm) can be determined once the new length scale, Dz, is determined, i.e., Q hSMAPð Þ5 L hSMAPð Þ � Dz. Noise
and uncertainties in the soil moisture retrieval process affect loss function estimates derived from soil mois-
ture increments. An error analysis by McColl et al. (2017a) showed that larger increments are less
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susceptible to noise effect. Similar to McColl et al. (2017b), in this study, increments less than 1% of the
range of observed soil moisture—along with those with intermeasurement precipitation—are excluded.

In Figure 3a, an example soil moisture time series is shown to highlight how the loss function is constructed.
Here dry-downs with a minimum of three soil moisture observations and two consecutive negative incre-
ments, Dh2, are identified. Figure 3b shows the collection of corresponding dry-downs over time, with the
longest dry-down spanning 13 consecutive days. For each individual dry-down the incremental soil moisture
loss, between time t and t 11 is –Dh2

Dtobs . These are shown as blue dots in Figure 4a. The loss function L hð Þ is then
obtained by applying a locally weighted linear smoother, or LOWESS, across all the data from all dry-downs.
The smoother used as span of 65% of the data when performing local regressions. In general, the loss function
is a monotonically increasing function with respect to increasing soil moisture; that is larger losses for larger
soil moisture values. The values hmin and hup denote the minimum and upper observed soil moisture values
used to define L hð Þ and determine the ‘‘observation-based’’ domain, or segment ‘‘B’’ in Figure 3.
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Figure 3. (a) Example SMAP soil moisture time series for a pixel in Oklahoma US for May–September 2015. The red circles indicate dry-downs with zero precipita-
tion (shown as the blue bars) in between SMAP observations. (b) The collection of dry-downs over time. The loss function L hð Þ is the negative gradient of these
dry-downs.
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Figure 4. (a) Reconstructed soil moisture loss function based on the SMAP soil moisture time series of Figure 3a. The small blue markers are individual losses, 2Dh2

Dtobs .
The conditioned expectation of these losses conditioned on soil moisture, after application of a locally weighted linear smoother, is the final loss function: L hð Þ5E

2Dh2

Dtobs jh
� �

(thick black line). The error bars show the vertical standard deviation of losses based on seven equal-count soil moisture bins. The loss function, based on
the dynamic range of observations, is limited between hmin and hup. (b) Schematic representation of the loss function along with four different loss Segments A:
dry-end interpolation; B: observation domain; C: slope-estimation domain; and D: losses due to saturation and beyond. In Segment C, the slope of the loss function
a is unknown and imbedded in the optimization process.

Water Resources Research 10.1002/2017WR021508

AKBAR ET AL. 6



Given the nominal 3 day SMAP revisit time and variable soil moisture dynamics, certain portions of the loss
function are not observed. Specifically, outside the observation-based domain (between hmin and hup), the
loss function must be defined in three additional segments:

a. For prolonged dry intervals, with zero precipitation, the amount of loss must also decrease with decreas-
ing soil moisture. However, the dynamic range of observations are limited and do not always span the
dry-end. To overcome this limitation, when needed, the loss function linearly interpolates between the
minimum observed soil moisture and the minimum possible SMAP value of 0.02 (m3 m23). The linear
interpolation behavior is consistent with the linear Stage-II evaporation loss process in water-limited
areas. We label this segment as ‘‘A’’ seen in Figure 3b.

b. Percolation or leakage into the soil during and immediately after precipitation events is a rapidly
occurring process. Therefore, if a rain event occurs in-between two consecutive SMAP observa-
tions, the percolation process may have finished and is entirely missed. To accommodate this, a lin-
ear loss component, below the porosity level and above hup, with an unknown slope of a [T21] in
the form of L hup

� �
1a � h tð Þ2hup

� �
is included. This slope-estimation segment is labeled as ‘‘C’’ in

Figure 3b.
c. Saturation losses are also considered for cases where the soil moisture level approaches and exceeds the

soil porosity value. These losses can be considered as runoff or spillage, for example, and are defined as
P tð Þ
Dz 2 /2h tð Þð Þ, where / is porosity. This segment is labeled as ‘‘D.’’

Therefore, taking in to account (a)–(c), the loss function in (2) is amended as

L hð Þ5

h20:02ð Þ � L hminð Þ
hmin20:02ð Þ 0:02 � h � hmin Segment Að Þ

E
2Dh2

Dtobs
jh

� �
hmin � h � hup Segment Bð Þ

L hup
� �

1a � h2hup
� �

hup < h < / Segment Cð Þ

P
Dz

2 /2hð Þ h � / Segment Dð Þ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(3)

Hereafter, the subscript SMAP for hSMAP is dropped for presentation clarity.

Changes in the volumetric soil moisture content in (3) are principally due to evapotranspiration and
interstorm percolation from surface to subsurface within the soil column. The last component of (3),
Segment D, additionally captures the saturation-excess runoff if hSMAP reaches porosity. There are, how-
ever, important runoff processes that are not adequately captured by (3). The SMAP product (hSMAP) rep-
resents an estimate of near-surface volumetric soil water content over a large area corresponding to the
half-power scale of the SMAP instrument antenna—approximately 40 km. Saturation-excess runoff may
occur over such a large domain even if the entire domain is not saturated. In humid or adequately wet-
ted domains, hSMAP may be below porosity but, within the domain, there may be areas where the soil is
locally saturated, e.g., downslope, near-channel, floodplain, or local areas with high flow accumulation.
Precipitation incident over such domains will generate runoff and not all the precipitation will add to
the storage in the control volume. Even though Segment D captures the saturation-excess runoff pro-
cess when the entire domain is saturated, there is likely an underestimation of this hydrologic process
with (3) and the use of coarse scale (�40 km) SMAP estimates of soil moisture. Additionally (3) does not
include infiltration excess runoff and lateral flows among adjacent pixels. At the relative coarse scale,
systematic exchange between pixels is likely to be far less than vertical evaporation and percolation
exchanges.

The impact of these shortcomings can be tested by examining what percent-of-time, and what fraction of
the soil moisture dynamics, is due to Segment B of (3). Segment B is constructed based on SMAP observa-
tions alone. Segments A, C, and D are extrapolations. In section 3.2, diagnostics on the percent-of-time and
fraction of water balance in the B and the A 1 C 1 D segments are presented. The results are indicative of
the degree to which the problem posed in this study is solved using observations only, i.e., observation-
driven.
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The procedure to estimate the loss function is in contrast to Koster et al. (2017) where the entire form
of L hð Þ is first parameterized as a monotonically increasing piecewise linear function. Then, for each
pixel, by minimizing the norm difference between model predictions and SMAP observations, the
parameters of L hð Þ were estimated. Here knowledge of the loss function is partially obtained from soil
moisture dry-downs and analysis of successive negative increments.

We emphasize that the form of the loss function given in (3) encapsulates all moisture losses as evident in
surface soil moisture observations. Determination of the individual components of L hð Þ, e.g., evaporation,
runoff, etc., requires additional modeling or ancillary data. The method outlined in this section is a first-
order attempt at determining L hð Þ based solely on soil moisture observations. It is sufficient for the purpose
of estimating Dz, the aim of this paper.

2.3. Estimating the Effective Hydrological Length Scale
The forward temporal evolution of soil moisture, h t11ð Þ (m23 m23), based on water balance can be written
as

h t11ð Þ5 h tð Þ1 P tð Þ
Dz
� Dt2L hð Þ � Dt (4)

where L hð Þ is the loss function in (3) and Dt is the model time step—different than Dtobs—and is set to 6 h,
i.e., 608 data points between May and September per year. By means of (4), the next time step soil moisture,
h t11ð Þ, can be predicted using the current estimate of soil moisture h tð Þ, while accounting for total precipi-
tation inputs and losses between t and t 1 1. This approach neglects diurnal soil moisture fluctuations. It is
also important to note that during and immediately after rain events, precipitation inputs and losses from
the control volume are simultaneous and continuous processes. However, the implementation of the loss
function and hydrological model in (3) and (4) is a two-step process. First, soil moisture h tð Þ is added to the
accumulated precipitation over the time-interval Dt. Then, total losses are subtracted from the combined
soil moisture and precipitation quantity. The piecewise implementation of the loss function in (3) supports
this approach.

Note that within the current water balance framework two parameters are unknown: the length scale Dz
and the extrapolation slope a. These parameters are estimated by formulating an objective function
J Dz; að ) and then minimizing the root-mean-squared (RMS) difference between a time series of N SMAP
observations, hobs tð Þ; t 2 tobs

1 ; tobs
N

� �
, and the corresponding predictions from (4). With a nominal 3 day

SMAP revisit rate between May and September 2015 and 2016, N is approximately 130 data points. To
estimate Dz and a, (4) is use to forward generate a time series of 6 hourly soil moisture using observations
of precipitation and losses. Then, using Simulated Annealing (Ingber, 2012), as the global optimization
routine, the overall sum of squared-differences between this time series and SMAP soil moisture is mini-
mized. For each year, the time series in (4) is initialized by the corresponding first SMAP soil moisture
observation.

Estimates of Dz can be different from the 50 mm support depth of SMAP soil moisture. This is partly due to
the variable degrees of correlation between surface and subsurface soil moisture dynamics. Second, precipi-
tation forcing as well as soil texture characteristic will affect the closure of (1) and minimization of the objec-
tive function. The surface soil moisture state must be conceptually redistributed within a control volume of
length Dz.

Accurate estimation of Dz and a rest on satisfactory reconstruction of the loss function when considering
observation-based approaches. In turn, this relies on detecting a sufficient number of soil moisture dry-
downs. With this factor in mind, we proceed by first determining dry-downs from 9 km SMAP soil moisture
observations at a given location. Then, using (2) individual observation-based losses are calculated. A collec-
tion of valid 9 km SMAP pixels, within a 36 km grid cell, are aggregated and combined together to increase
the sample size and to include more weather-induced soil moisture dynamics and dry-downs. The final step
involves minimizing the objective function using 36 km mean SMAP soil moisture and CPCU precipitation.
Pixels with more that 1% water fraction, vegetation water contents of more than 7 kg m22, and frozen or
snow covered are excluded. Moreover, note that estimation of Dz requires analysis of both wetting and dry-
down periods, and thus requiring precipitation data. If dry-downs are only analyzed (P(t) 5 0) in (4), Dz is
indeterminate.
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3. Results

3.1. Hydrological Length Scale
Figure 5 shows three pixel-level examples describing the length scale estimation process. The examples are
(a) Grasslands in Western US, (b) Croplands in Southeast US (Northern Florida), and (c) Shrublands in South-
west US. Each example covers a range of soil moisture, texture, and precipitation characteristics. For each
location, the figures include the 2015 and 2016 May–September SMAP time series soil moisture at 36 km in
black. Concurrent 6 hourly soil moisture predictions from (4) based on estimates of the length scale Dz and
slope a are shown in red. For each time series, the corresponding 6 hourly precipitation, P tð Þ, is also given.
The annotated plots on the left present the loss functions, as described in Figure 3. In all cases, time series
predictions from (4), exhibit high correlations with SMAP soil moisture (R2> 0.6) and appropriately timely
‘‘jumps’’ in soil moisture with respect to input precipitation. For all cases, the error standard deviations with
respect to SMAP are also comparable and approximately 0.035 m3 m23. Additionally, the corresponding
length scale are 46, 296, and 91 mm, for figures a–c, respectively. Each is uniquely determined.
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Figure 5. Three representative examples of SMAP (black) and 6 hourly predictions from (4) (magenta) soil moisture times series across CONUS: (a) Western US,
(b) Southeast US, and (c) Southwest US. (left) The observation-based loss functions in (2) and the black line is after application of a local smoother. The dashed
blue line is the linear loss component between hup and porosity with slope â . The two dashed vertical lines are from left to right, hup and porosity /:
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Section 1 states that the length scale is dependent on different soil and precipitation properties. This feature
is evident in Figure 5. Compared to Figures 5a and 5c, the example in Figure 5b has larger mean precipitation
and mean soil moisture—about 3 mm d21 and 0.18 m3 m23, respectively. Therefore, the length scale required
to provide closure to (1) also becomes larger, Dz 5 296 mm. Similarly, the example pixel in Figure 5c yields a
larger length scale (91 mm) compared to Figure 5a (50 mm) due to slightly larger mean precipitation and soil
moisture—1.1 mm d21 and 0.1 m3 m23 compared to 0.7 mm d21 and 0.06 m3 m23. Thus, inherent soil prop-
erties and forcing patterns affect this length scale. Naturally, we can expect different length scales when per-
forming the same analysis over winter months, for example, where precipitation patters may be different.

A map of Dz (mm) over CONUS is shown in Figure 6. Missing regions are due to vegetation water content
larger than 7 kg m22, more than 1% water fraction, frozen or snow-covered soil, or no detectable dry-
downs. For each pixel, Dz is the unique length scale of the associated hydrological system characterized by
precipitation inputs and water storage dynamics evident in SMAP surface soil moisture observations. Esti-
mates of this length scale show an east-west gradient with smaller values in the drier western parts of
CONUS, and larger values in the wetter eastern and southeastern parts of the country.

Over the duration of this study, far western parts of the US, specifically California, are dry and hydrologically
inactive—with near-zero mean precipitation. Thus, the closure required for (1) yield very small characteristic
length scales—similar to the scenario in Figure 5a. This is reflective of larger decoupling and decorrelation
between surface and root-zone soil moisture (Hirschi et al., 2014). Surface soil moisture dynamics in these
regions represent total water content from only a shallow depth. This behavior does change when the anal-
ysis is performed over a different period of time with different precipitation activity (figure not shown). In
contrast, larger length scales (Dz> 200 mm) are evident in south and southeast CONUS—similar to Figure
5c—where on average the regions are wetter.

More humid regions such as West of Mississippi River and the Eastern Seaboard have the highest estimates
of Dz in Figure 6. Much of these regions have vegetation water content greater than 7 kg m22 which are
masked due to the attenuation of the surface upwelling brightness temperature in dense canopies and
associated uncertainty in soil moisture estimates. Over these humid regions the water balance in (3) may
not adequately capture all the dominant hydrologic processes (see discussion at end of section 2.2). The Dz
estimates in these regions need to be viewed with this uncertainty and source of error in mind. Further-
more, the structure of (4) indicates that if water input into the soil control volume is over-estimated, i.e.,
local saturation-excess runoff loss is not adequately abstracted from the domain precipitation input, the Dz
may be over-estimated to compensate. This feature is more pronounced in the southeastern US where
stormflow runoff may occur prior to full saturation.
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0 200 400
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Figure 6. Map of the effective active hydrological length scale Dz (mm) over CONUS. Inset plot shows the probably distri-
bution of the estimated length scale. Less than 12% of pixels have a depth of 50 mm or lower.
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In section 1, Dz was presumed to be dependent on soil properties as
well as precipitation forcing characteristics. Overall, we find that pre-
cipitation characteristics determine up to 50% of the spatial variance
in Dz, while mean soil moisture and texture account for approximately
20%, and potential evaporation rates—from GLDAS—about 10% (fig-
ure not shown). In Figure 7 boxplots of (a) mean precipitation, (b)
mean soil moisture—a proxy to unsaturated hydraulic conductivity,
and (c) sand fraction with respect to binned Dz values are given. Soil
texture, in the form of sand fraction, has a lesser influence on Dz.
Across all Dz bins, the median sand fraction follows a shallow ‘‘U’’
shape. For every low Dz values, the median sand fraction is 45%, drop-
ping to 40% for intermediate Dz then slightly increasing again.

The estimated landscape water storage (Dz � hSMAP) can now be used
in water balance studies with fluxes (e.g., precipitation) balancing
change in water storage (depth of water in the soil or volume of soil
water per unit surface area). As a test of this statement, the methodol-
ogy is applied to in situ soil moisture observations where both the sur-
face and the profile soil moisture are measured (Appendix A). The
results using in situ measurements show that the surface soil moisture
series and precipitation describe a landscape water balance once an
applicable Dz is estimated using the methodology introduced in this
study.

The spatial pattern of Dz is generally consistent with the correlation
map of Figure 1, where R2 between surface (5 cm) and root-zone soil moisture (at 10, 20, 50, 100 cm) is
shown. Observe that, in general, Dz is larger in regions where at depth (up to 50 cm), the surface to root-
zone soil moisture correlation is also large. Additionally, the east-west gradient of Dz across CONUS is simi-
lar to estimates of the effective column water holding capacity (mm) from Koster and Suarez (2001) but the
overall magnitude is naturally smaller since the latter considers total stored water content.

As a measure of the reliability of (4), the error standard deviation between SMAP observations and (4) are
shown in Figure 8a. The median error standard deviation across CONUS is 0.06 (–) and the largest errors are
concentrated in croplands. The latter is partly due to frequent and sporadic precipitation events undesirably
affecting the ability to detect suitable soil moisture dry-down. Since the period of study is concurrent with
seasonal crop growth, not only rapid changes in vegetation amount are possible, but high rates of moisture
uptake are expected (Konings & Gentine, 2017). The explained-variance, is shown in Figure 8b. R2 is largest
in the Great Plains, especially the southern plains (>0.7). It is lowest in the dry western and southwest parts
of the US coincident with smaller estimates of Dz: The median R2 across CONUS is 0.65.

3.2. Loss Function Performance
As discussed in section 2, to complete the water balance in (1), in addition to soil moisture and precipita-
tion, the soil water loss function must be known. In section 2.2, a piecewise loss function was reconstruction
based on analysis of consecutive negative increments of soil moisture and defined in (3). As seen in Figure
4b, L hð Þ, is partitioned into four segments: A: dry-range extrapolation, B: observation-based domain, C:
slope-estimation, and D: saturation and beyond.

Since L hð Þ is partially observation-based, it is important to examine its performance within the proposed
hydrological framework of (1), (3), and (4). More specifically, estimates of the length scale Dz may become
questionable, if (4) operates outside the observation-based domain (Segment B) too often. If the extreme
dry-end or wet-end extrapolation components (Segments A, C, or D) are utilized more than Segment B
often, then Dz is a superfluous parameter.

We use both percentage-of-time and fraction of the moisture flux within each loss function segment as
diagnostics. To examine this behavior, Figures 9a and 9b show plots of the percent-of-time the estimates in
(4) are evaluated within the four segments. Figure 9a indicates a median of 80% of time across CONUS the
model is within the observation-based domain and approximately 15% of time outside this region
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Figure 7. Classification of (a) mean precipitation (mm d21) (precipitation pene-
tration depth forcing), (b) mean soil moisture (m3 m23), and (c) sand fraction
with respect to binned Dz (mm). (b) and (c) capture soil’s hydraulic conductivity
and texture characteristics. Spatially across CONUS, precipitation is the stron-
gest determinant of Dz.
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(extrapolation Segments A, C, and D). Western and Southwest US, especially California, show a large
percentage-of-time spent in the dry-end interpolation domain (breakdown of A, C, and D regions is not
shown).

Figures 9c and 9d are similar to above, but now show total losses with respect to total precipitation. The
percentages are determined by normalizing accumulated losses within each segment by the total precipita-

tion during the 2 years, i.e.,
P

Dz�L hð ÞP
P tð Þ �100: The figure also highlights an additional insight. Within the

dynamic range of SMAP soil moisture, Segment B, approximately 70% of the terrestrial water cycle can be
captured. Furthermore, by applying water balance, using precipitation, an active soil layer of depth Dz can
be characterized.

4. Discussion

The ability to perform water balance using remotely sensed estimates of surface volumetric soil moisture is
the principal motivation behind finding a length scale. This scale factor transforms surface soil moisture esti-
mates—in volumetric units—to the depth of soil water within the landscape—in length units. Mass input
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Figure 8. Map of (a) the error standard deviation between SMAP observations and estimates from (4), and (b) the corre-
sponding correlation coefficient, R2. Inset plot in (b) shows the R2 distribution with a peak about 0.65. Largest errors are
concentrated around croplands in Midwest US.
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into the landscape in the form of precipitation and losses in the form of evapotranspiration and recharge/
discharge balance the change in volume of water per unit area (a depth of water). This volume can only be
characterized once the soil volumetric water content is combined with a corresponding length scale Dz.
Additionally, this length scale should be defined such that it is consistent with the incident precipitation
and the observed volumetric soil water content dynamics. Therefore, the identification such a length scale
allows usage of surface volumetric soil water content products—such as those produced by SMAP—in
water balance studies that begin with local precipitation.

The need for this scaling factor is evident in studies of catchment water balance. Microwave remote sensing
observations of surface soil moisture have experimentally been shown to correlate well with gravity-based
total water storage estimates (Abelen et al., 2015). At medium scale basins throughout the US
(<10,000 km2), Crow et al. (2017) demonstrated that a statistically significant closure in the annual water
budget can be obtained when surface-only soil moisture is multiplied by a storage scale factor, e.g., j � dh

dt .
Such a scaling factor is required to transform soil moisture from volumetric units to water content [L] which
is the extensive storage variable required for water budget analysis. In Crow et al. (2017), the parameter j
[L] was estimated as the ratio between the variance of change in columnar water volume—from gravity-
based observations—to the variance of change in remotely sensed volumetric surface soil water content.
Using this storage scale factor j [L] they obtained high correlations between annual sums of fluxes (P 2 Q)
and scaled surface-only soil moisture storage. By application of the methods described in this study over
longer periods of time, a long-term estimate of Dz can be obtained, and then similar to Crow et al. (2017),
used to examine basin level water balance closure. Moreover, this length scale Dz can be estimated globally
(using the methodology introduced in this study) where ground-based gravity anomaly measurements are
not available everywhere.
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Figure 9. (a) Percent-of-time hydrological model is evaluated in the observation-based loss function domain, i.e., Segment B, with a median of 80%. (b) Percent-of-
time hydrological model is either in the dry-end interpolation (e.g., California), slope-estimation domain, or beyond saturation, i.e., Segments A, C, and D, with a

median of 15% (c) similar to (a) but for percent-of-total losses with respect to total precipitation
P

Dz�L hð ÞP
P
� 100. A median of 70% of the water cycle is within the

observation-based domain (d) similar to (b) but showing percent-of-total losses with respect to total input precipitation with a median of 27%. Figures 9a and 9c
indicate that more than 70% of the dynamics of the terrestrial water cycle, in the form of surface soil moisture, is captured by SMAP.
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Several studies that have used time series of soil moisture to improve estimates of or fully estimate precipi-
tation have found the need for a scaling factor to apply to the volumetric soil water content series (Brocca
et al., 2013, 2014; Crow et al., 2009; Koster et al., 2016). Crow et al. (2009) show improvement in precipitation
estimates by application of a multiplicative correction on remotely sensed precipitation accumulations to
overcome potential errors in precipitation observations as well as soil water losses within their Antecedent
Precipitation Index (API) model. The correction term included a time-constant scaling factor k (–). This factor
was either predetermined or calibrated with respect to independent precipitation data sets and later trans-
lated to length units [L] via an observation operator within a Kalman Filter. Similarly, Brocca et al. (2014)
demonstrates global rainfall estimation, i.e., the SM2RAIN algorithm, using remotely sensed soil moisture
within the context of water balance similar to (1). SM2RAIN parameterizes the loss terms in (1) as a parame-
terized power-law function of soil moisture. The SM2RAIN algorithm also requires a soil depth later Z* [L]
prior to rainfall estimation. Brocca et al. (2014) estimates this parameter via calibration of the SM2RAIN
model with respect to benchmark precipitation products—estimates of Z* were, in general, positively corre-
lated with respect to increasing precipitation. In contrast to these prior studies, estimates of Dz are obtained
within a self-consistent water balance framework.

The emphasis of this work is on observation-driven approaches to provide first-order understanding and
estimates of water balance. Note that in section 2, the loss function estimation process uses only soil mois-
ture observations and precipitation information. Importantly, the loss function is estimated from SMAP soil
moisture product alone in a nonparametric fashion. No model (e.g., API or parameterized power-law, etc.)
are used to estimate the interstorm loss processes. A few obvious caveats exist. First, partitioning the total
losses into individual components (evaporation, drainage, possible runoff, etc.) is not possible when using
soil moisture and precipitation series alone. This can be addressed by introducing modeling elements as
well as additional ancillary data. Furthermore, the applicability and representativeness of the loss function is
limited only to the period of study (May–September 2015 and 2016). Implementation and incorporation of
this method in to climate models, for example, require additional investigation. In wetter regions, precipita-
tion is a dominant control on the length scale Dz. The influence of seasonal and annual precipitation charac-
teristics on estimated Dz can be examined by application of the methods in section 2 over longer periods
of time. We expect, at a given location, Dz will slightly change over time, primarily due to precipitation.

5. Conclusions

The surface soil moisture state often shares mutual information and is well correlated with deep soil water
content. By characterizing a water balance control volume with precipitation and surface-only soil moisture
dynamics, a unique and representative effective depth, or length scale, can be determined. SMAP surface-
only soil moisture observations and precipitation information are used to estimate this effective hydrologic
depth. Across CONUS the median Dz is 135 mm. It shows an east-west divide with larger length scales for
wetter regions with higher mean precipitation. In dry western parts of the country, especially Californian,
the length scale is small due to little hydrological activity—near-zero mean precipitation—and is represen-
tative of a higher degree of decorrelation between surface and deeper soil moisture dynamics. Precipitation
alone explains up to 50% of the spatial variance in Dz across the US. Based on analysis of soil moisture dry-
downs and successive negative increments of the soil moisture time series, an observation-based moisture
loss function estimation technique was also presented. This method conditions the rate of loss of moisture
Dh2

Dtobs on soil moisture itself, in order to arrive at the loss function, L hð Þ5 E 2Dh2

Dtobs j h
� �

: Approximately 70% of
the terrestrial water cycle dynamics occur within the range of SMAP soil moisture observations such that an
active soil layer Dz can be characterized when water balance is applied to precipitation and SMAP soil
moisture.

Appendix A: Total Stored Water Dynamics Reflected in the Surface
Soil Moisture State

This appendix presents a complementary analysis supporting the linkage between the surface soil moisture
state and deeper soil water content and its dynamics. Specifically, we examine the degree to which the
total landscape soil water storage [L], from surface to depth Dz is correlated with surface-only soil moisture
when it is scaled by a factor Dz, i.e., west tð Þ5Dz � h05cm tð Þ. This portion of the study is implemented using
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in situ profile soil moisture (5, 10, 20, 50, and 100 cm) from the US Climate Reference Network (USCRN)
(Bell et al., 2013).

First, the entire length scale estimation process outlined in section 2 is applied to USCRN in situ surface soil
moisture data, h05cm . That is, first the loss function in (2)–(3) is reconstructed and used to estimate the char-
acteristic length scale, but at a point level. For each location, CPCU precipitation data are used. Over the
period of study (May–September 2015 and 2016) only a subset of USCRN station have complete data
records at all depths (approximately 50 sites). Locations with missing data, or gaps, in the temporal soil
moisture time series are excluded. Additionally, similar to SMAP observations, data are sampled every 3
days at 0600 local time.

For each valid USCRN site, once estimates of Dz are obtained, we cal-
culate the total columnar stored soil water content from the surface
down to a depth Dz, wtrue t; Dzð Þ (cm). The profile soil moisture state is
integrated from 0 to Dz (cm):

wtrue tð Þ5
ðDz

0

h t; zð Þdz (A1)

The estimated west t; Dzð Þ and wtrue t; Dzð Þ are related through

wtrue tð Þ5west tð Þ1� (A2)

where � reflects measurement errors as well as representativeness
errors caused by deviations of wtrue tð Þ from west tð Þ5Dz � h05cm tð Þ.

Figure A1 shows the correlation coefficient and error standard devia-
tion statistics between wtrue tð Þ and west t;ð Þ. The figures show that wtrue

tð Þ and west tð Þ are well correlated with at most 1 cm error standard
deviation. In Figures A1a with the exception of a few sites, R2> 0.65.
Note that each location is associated with a unique Dz (figure not
shown).

When all valid USCRN site are combined together the scatter plot in
Figure A2 between wtrue t; Dzð Þ and west t; Dzð Þ is obtained. The figure
demonstrates the strong linkage and very high correlation (R2 � 0.89)
between the integrated soil moisture profile from (A1), and the corre-
sponding scaled surface-only soil moisture from (2). When considering
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Figure A1. (a) Correlation coefficient, R2, between wtrue and west . (b) Same as Figure A1a but for error standard deviation (cm). Station with missing data, or gaps,
in the soil moisture time series at all depths are excluded.
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Figure A2. Scatter plots of wtrue and Dz � h05cm, for all valid USCRN site com-
bined (50 sites, May–September 2015 and 2016). Contours indicate the density
of data points. R2 is 0.89 indicating that the total integrated water content
dynamics—from 0 to Dz—are well reflected in the scaled surface soil moisture
Dz � h05cm. Each USCRN site has its own associated length scale.
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all sites, a negative bias exists, 20.4 cm, with an error standard deviation of approximately 1 cm. Figures A1
and A2 demonstrate that within conceptual control volume, a unique length scale exists such that the total
integrated soil moisture content (form the surface to this depth) is well reflected in surface-only soil mois-
ture dynamics.
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