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ABSTRACT: A recent theory proposes that inland continental regions are in a state of surface flux equilibrium (SFE), in

which tight coupling between the land and atmosphere allow estimation of the Bowen ratio at daily to monthly time scales

solely from atmospheric measurements, without calibration, even when the land surface strongly constrains the surface

energy budget. However, since the theory has only been evaluated at quasi-point spatial scales using eddy covariance

measurements with limited global coverage, it is unclear if it is applicable to the larger spatial scales relevant to studies of

global climate. In this study, SFE estimates of the Bowen ratio are combined with satellite observations of surface net

radiation to obtain large-scale estimates of latent heat flux lE. When evaluated against multiyear mean annual lE obtained

from catchment water balance estimates from 221 catchments across the United States, the resulting error statistics are

comparable to those in the catchment water balance estimates themselves. The theory is then used to diagnostically estimate

lE using historical simulations from 26 CMIP6 models. The resulting SFE estimates are typically at least as accurate as the

CMIP6model’s simulated lE, when compared with catchment water balance estimates. Globally, there is broad spatial and

temporal agreement between CMIP6 model SFE estimates and the CMIP6 model’s simulated lE, although SFE likely

overestimates lE in some arid regions. We conclude that SFE applies reasonably at large spatial scales relevant to climate

studies, and is broadly reproduced in climate models.

KEYWORDS: Evaporation; Evapotranspiration; Hydrologic cycle; Latent heating/cooling

1. Introduction

Evapotranspiration E is a major flux in the terrestrial water,

energy, and carbon cycles. On average, approximately 60%

of precipitation falling on land returns to the atmosphere di-

rectly through terrestrial E (Oki and Kanae 2006). The asso-

ciated latent heat flux lE (where l is the latent heat of

vaporization of water) cools the land surface and lower at-

mosphere. Plants link carbon assimilation with transpiration

through stomatal regulation (Berry et al. 2010). In addition, E

is of practical importance in water resources management and

agriculture (e.g., DeLucia et al. 2019).

Evapotranspiration is constrained by both the land (soil

moisture, plant physiology, surface temperature) and atmo-

sphere (vertical gradients in air temperature and humidity,

stratified turbulent transport). The land surface is highly het-

erogeneous, which complicates modeling at global scales. As a

result of these modeling challenges, climate models systemat-

ically overestimate E at annual time scales (Mueller and

Seneviratne 2014). They also underestimate it at shorter time

scales in many inland continental regions during the Northern

Hemisphere summer (Mueller and Seneviratne 2014; Ma et al.

2018). Compared with climate models, which are prognostic,

diagnostic E products have also been developed (e.g., Mueller

et al. 2013). Such products often take advantage of new satellite

observations (e.g., Fisher et al. 2008; Martens et al. 2017).

While satellite E products have proved useful in a variety of

applications, a recent intercomparison study found substantial

disagreement between diagnostic E products (Miralles et al.

2016). Furthermore, when evaluated against global long-term

catchment water balance estimates, none of the diagnostic E

products demonstrated unequivocal improvements over E

obtained from a reanalysis (Fig. 10 of Miralles et al. 2016).

Since there is often a trade-off betweenmodel simplicity and

accuracy, much attention has been paid to improving model

accuracy by developing more complex E models. However,

different models will be necessary for different purposes, and

simple models have their own advantages. For example, simple

models can bemore useful for developing understanding of the

governing physics (Held 2005; Jeevanjee et al. 2017; Maher

et al. 2019), an approach adopted fruitfully in many previous

studies of E (De Bruin 1983; McNaughton and Spriggs 1986;

Culf 1994; Brutsaert and Parlange 1998; Betts 2000; Raupach

2000, 2001; McColl et al. 2019). In addition, relatively simple

models may be more useful in settings where input data re-

quired by more complex models are not available. For exam-

ple, land surface observations—including soil moisture, soil

texture, and various vegetation properties (height, water content

and functional type)—are often required as inputs tomodels ofE,

at spatial resolutions that are sufficiently fine to resolve the (typ-

ically considerable) spatial variability of the heterogeneous land

surface. Such observations are seldom routinely available, par-

ticularly at large spatial scales, and so parameterizations must be

introduced that add considerable error (e.g., Rigden et al. 2018;

Trugman et al. 2018). Algorithms based on the ‘‘complementary
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relationship’’ (Bouchet 1963; Morton 1969; Brutsaert and

Stricker 1979; Brutsaert 2015; Ma and Szilagyi 2019) and the

Evapotranspiration from Relative Humidity at Equilibrium

(ETRHEQ) method (Salvucci and Gentine 2013; Rigden and

Salvucci 2015) have allowed estimation of E with substantially

fewer data inputs comparedwithmore complexmethods. Even

in applications where model accuracy is paramount, if there is

substantial uncertainty in reference measurements used to

evaluate model performance, it may be difficult to justify

substantial model complexity due to the risk of overfitting. For

this reason, if a simple model exhibits errors comparable to

those in the reference measurements themselves—an upper

bound on the performance of any model—then the simple

model is preferable to more complex models.

In this study, we focus on a maximally simple diagnostic model

of continentalE at daily tomonthly time scales. Themodel, called

surface flux equilibrium (SFE; McColl et al. 2019; McColl and

Rigden 2020), assumes strong coupling between the land and at-

mosphere, such that higher near-surface air temperatures and

specific humidities are mainly caused by higher sensible heat

fluxes and latent heat fluxes at the land surface, respectively

(rather than atmospheric mechanisms, such as convergence of

heat and moisture). This model is attractive because it bypasses

the need to explicitly account for the complexity of the land sur-

face; instead, land surface heterogeneity becomes embedded in

the near-surface atmospheric state, allowing the estimation of

land surface quantities from readily available atmospheric mea-

surements, without calibration. The specific prediction made by

SFE is that, within this tightly coupled system, an approximate

balance exists between the surface moistening and heating terms

in the near-surface relative humidity budget; this assumed balance

leads to a simple equation for the Bowen ratio (defined as b 5
H/lE) or, equivalently, the evaporative fraction [EF 5 (1 1
b)21]. When combined with observations of net radiation, it can

be used to estimate latent heat flux without any calibration pa-

rameters or land surface inputs, evenwhen the land surface state

substantially constrains E.

While SFE is, to our knowledge, the simplest model of actual

E at daily to monthly time scales over inland continental re-

gions, it is far from obvious that its assumptions are reasonable,

and that its predictions will be accurate. While SFE is not ex-

pected to hold in coastal regions or at subdaily time scales, a

recent comparison with state-of-the-art eddy covariance mea-

surements from around the world demonstrated that errors in

SFE estimates were indistinguishable from those in the eddy

covariance measurements themselves at a majority of inland

continental sites (McColl and Rigden 2020). However, the

eddy covariance measurements used in that study apply to

quasi-point spatial scales and have limited global coverage.

The dominant physical processes controlling E vary substan-

tially with spatial scale, particularly since surface heterogeneity

is unavoidable at larger scales (Jarvis and McNaughton 1986;

Baldocchi et al. 1991; Raupach and Finnigan 1995; Brutsaert

1998; Mahrt 2000; Taylor et al. 2013; Li and Wang 2019; Bou-

Zeid et al. 2020). For example, consider an idealized case in

which a small pan of water is placed in an otherwise dry desert.

At the scale of the pan, E will be very high and limited by at-

mospheric water demand, since there is an abundant supply of

water at the land surface provided by the pan. At larger scales,

however, E will be very low and limited by land surface water

supply, since the land surface water supply is negligible when

averaged over both the pan and the much larger desert.

To what extent does SFE apply at larger spatial scales rel-

evant to climate studies? If it applies reasonably at these scales,

to what extent is it reproduced in climate models? In response

to these questions, in this study, we evaluate the performance

of SFE predictions at large spatial scales [O(102–104) km2]

relevant to studies of climate. To do this, SFE estimates are

compared with the most accurate large-scale estimate of E:

catchment water balance estimates of multiyear mean annual

E. Since the catchment water balance estimates are not entirely

free from error, a simple error propagation analysis is incor-

porated into the comparison. The performance of SFE esti-

mates are benchmarked against equivalent estimates from a

reanalysis, and from two other simple models ofE: the Budyko

and Priestley–Taylor equations. While simple, it is shown that

the Budyko equation is indistinguishable from a perfect model

in terms of estimated error statistics, due to unavoidable un-

certainties in the catchment water balance reference estimates;

comparisons with a broader suite of more complex satellite or

reanalysis products would, therefore, be no more statistically

meaningful than comparison with the Budyko equation. The

comparison with the Priestley–Taylor equation is used as a test

of the statistical power of our analysis: since the Priestley–

Taylor equation is not expected to provide accurate estimates

of E over most land surfaces, our analysis should clearly

demonstrate that SFE estimates perform better than Priestley–

Taylor estimates. If it does not, this would imply that errors in

the catchment water balance estimates preclude a statistically

meaningful assessment of the performance of SFE. After

demonstrating that SFE performs well at large scales, we also

evaluate the extent to which SFE is an emergent feature

within a suite of climate models. The aim of this comparison is

not to evaluate SFE, but to test the degree to which climate

models reproduce SFE. It is shown that climate models do, on

the whole, reproduce SFE reasonably well; that is, given cli-

mate model outputs of near-surface air temperature and spe-

cific humidity, and surface net radiation, the climatemodels are

able to estimate lE using SFE reasonably accurately. These

results provide further empirical support for the robustness of

SFE, and for its application to studies of continental climate.

This manuscript is organized as follows. In section 2, the data

and climate models used to estimate and evaluate SFE at the

catchment scale are presented, along with theEmodels used to

benchmark its performance. In section 3, the performance

comparisons are presented and discussed, along with known

limitations of our analysis and its relation to previous studies.

We conclude with a summary in section 4, and a brief discus-

sion of future research opportunities using SFE.

2. Methods and data

a. Estimation of multiyear mean annual E from catchment

water balance

Averaging over multiyear time scales, annual changes in

water stored within a catchment are typically small in comparison
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to annual fluxes of water in and out of the catchment.

If one further assumes that precipitation P, E, and runoff

Q are the dominant fluxes, and that all runoff exits the catch-

ment at its gauged outlet, then the catchment’s multiyear mean

annual water balance reduces to E 5 P 2 Q, where Q is

measured as streamflow at the catchment’s outlet. Since mea-

surements of P and Q are more prevalent than measurements

of E, this approach is often used to estimate multiyear-mean

annual E at catchment scales (e.g., Jung et al. 2010; Miralles

et al. 2016). The assumptions made in this approach are sub-

stantially violated at shorter time scales. For example, the as-

sumption of no change in storage can be significantly inaccurate

even when applied to estimating annualE for a single year (Han

et al. 2015); neglecting positive changes in storage will positively

bias estimates of E obtained using this method. However, for

multiyear mean annual E, this approach arguably remains the

most accurate available at large spatial scales (Vinukollu et al.

2011). For this reason, our analyses focus on multiyear mean

annual time scales when using catchment water balance E esti-

mates. We consider shorter time scales in more detail in later

sections using climate model outputs.

The catchments used in this study are shown in Fig. 1, andwere

obtained from the Model Parameter Estimation Experiment

(MOPEX) dataset (Duan et al. 2006). Since SFE is not expected

to hold in coastal regions (McColl et al. 2019; McColl and Rigden

2020), catchments within 250km of coasts and large waterbodies

were removed. Moreover, since smaller catchments are more

likely to violate the assumptions of the catchment water balance

mentioned above, catchments smaller than 2048km2 were ex-

cluded, consistent with previous studies (Yin et al. 2019). This

resulted in 221 catchments retained for further analysis (Fig. 1),

spanning a broad range of climates, land cover types, and basin

sizes (2053–25 791km2). Figure 1 maps the three major fluxes in

each catchment’s multiyear mean annual water balance, where E

is estimated as the difference between precipitation and runoff

(further details on the data used in this figure are provided in the

next section).

b. Data

The surface net radiation data used are obtained from the

NASA Clouds and Earth’s Radiant Energy System (CERES)

EBAF Level 3b Edition 4.1 product (Kato et al. 2018). CERES

observations have been globally validated (Jia et al. 2018), and

used extensively in other studies of global E (Vinukollu et al.

2011; Miralles et al. 2016). The CERES data are provided at a

monthly temporal resolution, and a 18 spatial resolution. To
match the finer spatial resolution of other forcing data used in

this study (1/88), the CERES data are interpolated to a 1/88 grid

FIG. 1. Spatial distribution of the multiyear (2001–14) annual mean (a) precipitation,

(b) runoff, and (c) evapotranspiration E for each catchment used in this study. Evapotranspiration

E is estimated as the difference between observed precipitation and runoff.
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using nearest-neighbor resampling. We use data spanning the

period 2001–14 in this study.

Daily streamflow gauge observations from 2001 to 2014 were

obtained for each catchment from the U.S. Geological Survey

(USGS) National Water Information System (http://waterdata.

usgs.gov/usa/nwis/sw). The daily streamflow data were con-

verted to annual averages. Only years with nomissing daily data

were retained in the analysis.

Precipitation data were obtained over the period 2001–14 for

each catchment from the Parameter-Elevation Regressions on

Independent Slopes Model (PRISM, http://prism.oregonstate.

edu, Daly et al. 1994). The PRISM product interpolates daily

observations from 13000 ground stations across the United

States onto a 4-km resolution grid. The PRISM precipitation

data were also aggregated onto 1/88 grids for consistency with

other forcing datasets.

All other meteorological data, including near-surface air

temperature, specific humidity and surface pressure, were ob-

tained from the NorthAmericanRegional Reanalysis (NARR),

available at a monthly temporal resolution and 1/88 spatial res-
olution (NARR, Mesinger et al. 2006). The NARR latent heat

flux was also obtained for comparison with estimates obtained

from SFE. The data are outputs from the NARRmodel cycling,

rather than direct observations, although the system itself is

constrained by observations. Given the absence of observations

at different heights, we used reanalysis estimates of near-surface

atmospheric quantities at a height of 2m at all locations.

c. Evaluation of E models

Surface flux equilibrium (McColl et al. 2019; McColl and

Rigden 2020) hypothesizes that, at daily tomonthly time scales,

the latent heat flux lE can be estimated using the relation

lE5
l2q

l2q1 c
p
R

y
T2

R
n
, (1)

where l is the latent heat of vaporization of water (J kg21); Rn

is net radiation (Wm22); q and T are the specific humidity (—)

and temperature (K) of the near-surface atmosphere, respec-

tively; cp is the specific heat capacity of the near-surface at-

mosphere at constant pressure (J kg21 K21); and Ry 5
461.5 J kg21 K21 is the ideal gas constant for water vapor.

While l and cp are both technically functions of temperature,

their dependence on temperature is weak for typical atmospheric

conditions on Earth and they are commonly treated as constants,

with l ’ 2.5008 3 106 J kg21 and cp ’ 1005 J kg21K21.

Furthermore, the ground heat flux has been neglected here, as it

is typicallymuch smaller thanRn at time scales longer than a day.

This implies that lE can be estimated, without calibration of any

free parameters, solely from observations of q, T, and Rn using

Eq. (1). We used Eq. (1) to estimate lE for each month, and for

each pixel within a given catchment, and then spatially and

temporally aggregated to catchment and multiyear scales,

respectively.

To benchmark the performance of the SFE estimates at

catchment scales, we compared it to three other E estimates:

the Priestley–Taylor and Budyko equations, and the reanalysis

(NARR). The Priestley–Taylor and Budyko equations were

chosen for comparison because, like SFE, they do not require

any land surface variables as inputs, and are often implemented

without calibration of free parameters. While it might seem

strange to benchmark against these relatively simple models

rather thanmore detailedmodels, it will be shown that the SFE

and Budyko models both perform better than the reanalysis,

which is substantially more complicated. More broadly, it will

be shown that the SFE and Budyko models are indistinguish-

able from a perfect model in terms of estimated error statistics,

due to unavoidable uncertainties in the reference dataset. The

comparison with the Priestley–Taylor equation provides a test

of the statistical power of our analysis: if our analysis is not able

to demonstrate that the Priestley–Taylor equation performs

relatively poorly (since it is not expected to accurately estimate

E over most water-limited land surfaces), then the analysis is

overwhelmed by uncertainties in the catchment water balance

reference dataset.

The Priestley–Taylor equation (Priestley and Taylor 1972)

provides an estimate of E from a saturated land surface, and is

given by

lE5a
«

«1 1
R

n
5a

l2q*(T)

l2q*(T)1 c
p
R

y
T2

R
n
, (2)

where q*(T) is the saturation specific humidity (—), «5
(l/cp)[lq*(T)/RyT

2] is the normalized slope of the Clausius–

Clapeyron relation (—), and a is the Priestley–Taylor pa-

rameter (—). A common choice for this parameter, which

we adopt here, is a 5 1.26 (Priestley and Taylor 1972). Since

the Priestley–Taylor equation only requires T and Rn as in-

puts, it is simpler than Eq. (1), provided a is treated as a

known constant. It should be noted that estimates of a based

on field observations vary considerably (Shuttleworth and

Calder 1979).

The Budyko relation provides an estimate of multiyear

mean annual lE at large scales [Eq. (107) of Budyko 1958]:

lE5 lP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

n

lP
tanh

�
lP

R
n

��
12 exp

�
2
R

n

lP

��s
, (3)

where P is multiyear mean annual precipitation (kg m22 s21).

This equation is also arguably simpler than Eq. (1), as it only

requires P and Rn as inputs. Other functional forms have also

been proposed (e.g., Yang et al. 2008):

lE5lP

��
R

n

lP

�2n

1 1

�21/n

, (4)

where n is a (positive) calibration parameter, which we obtain

by fitting to the catchment water balance data described in the

previous section. In terms of inputs, both Eqs. (3) and (4) re-

quire P and Rn as inputs, meaning they are both somewhat

simpler than Eq. (1), which requires T, q, and Rn. However,

Eq. (4) includes a calibration parameter, whereas Eq. (1) has

no parameters. Furthermore, unlike SFE, neither form of the

Budyko relation generalizes to time scales shorter than the

multiyear mean annual.

The root-mean-square error (RMSE) and mean bias (B)

were estimated for each model, with respect to the catchment
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water balance estimate of E (which we also refer to as the

‘‘reference’’ E). Some of the deviation between modeled and

reference E is due to errors in the catchment water balance E

estimate, particularly due to sampling errors in the precipita-

tion data used (Milly and Dunne 2002; Miralles et al. 2016).

Therefore, even a perfect E model would exhibit imperfect

error statistics when compared to catchment water balance E

estimates. To quantify this effect and to benchmark the per-

formance of each model, a simple error analysis was conducted.

The error model Ê5P(11 d)2Q was used, where d is a

fixed bias, and Ê is the catchment water balance estimate. This

error model emphasizes fixed biases [such as systematic neg-

ative biases from gauge undercatch (Legates and Willmott

1990), and undersampling of mountainous regions (Milly and

Dunne 2002)] and ignores random errors, which are presum-

ably significantly reduced by averaging over multiyear time

scales. Furthermore, errors in Q are neglected, since they are

likely much smaller than those in estimates of precipitation.

Milly andDunne (2002) conducted a detailed analysis of errors

in catchment-scale precipitation estimates. They found that ‘‘a

10% to 20% bias in precipitation is typical’’ among the basins

in their study, with the bias considerably larger in many cases.

If d5215% is used as a representative precipitation bias, this

implies that even a perfect model ofEwill exhibit the following

error statistics:

RMSE
0
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(E2 Ê)

2
q

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f(P2Q)2 [P(11 d)2Q]g2

q

5

ffiffiffiffiffiffiffiffiffiffi
P2d2

q
5 0:15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

i51

P2
i

s
, (5)

B
0
5E2 Ê52Pd5 0:15

1

N
�
N

i51

P
i
, (6)

where averaging is performed over N catchments used in the

study. While the PRISM precipitation product used in this

study makes corrections for orography, in general, precipita-

tion products typically still underestimate precipitation even

after making such corrections (Beck et al. 2020). RMSE0 and

B0 are our best estimates of the error statistics of a perfect E

model, when compared against the catchment water balance

estimates of E.

d. Comparison with CMIP6 model simulations

We also evaluate the performance of SFE within climate

models, using historical Coupled Model Intercomparison

Project phase 6 (CMIP6; Eyring et al. 2016) outputs over the

period 2001–14. Specifically, monthly outputs of variables tas

(near-surface air temperature), huss (near-surface specific

humidity), hfls (latent heat flux), and hfss (sensible heat flux)

were used, with available energy estimated as the sum of la-

tent and sensible heat fluxes. At time of writing, 26 CMIP6

models provided these outputs over the required time period,

and so our analysis is restricted to those models. The focus of

this study is on comparison with observations where possible,

so we limit our analysis to historical simulations, which can be

compared with observed climatology, rather than future

projections.

When comparing eachCMIP6model to the catchment water

balance estimate of E, catchments smaller than the model’s

spatial resolution were discarded. Since spatial resolution

varied between climate models, the number of catchments

used in the comparison was different for each model.

The comparison was repeated using only catchments that

were sufficiently large to be resolved by all CMIP6 models,

resulting in N 5 8 catchments. Since it is difficult to estimate

validation statistics with such a small sample size, and our

analysis is not focused on differences between CMIP6 models,

we elected to focus on the analysis which uses the maximum

number of catchments allowed by each model’s spatial reso-

lution, even though this results in different catchments being

used in the validation of each model. However, results are also

presented for the case in which a consistent set of catchments

are used for each CMIP6 model.

3. Results and discussion

a. Evaluation of SFE at the catchment scale

Figure 2 presents the comparison of the fiveEmodels—SFE

[Eq. (1)], Priestley–Taylor [Eq. (2)], the reanalysis (NARR),

the Budyko equation [Eq. (3)], and the calibrated Budyko

equation [Eq. (4)]—with the reference catchment water bal-

ance lE estimate. SFE (Fig. 2a) and both Budyko equations

(Figs. 2d,e) perform well. In particular, the estimated RMSE

and B for these three models are comparable to (in fact, lower

than) the values expected for a model with no error, after ac-

counting for errors in the reference lE [RMSE0 5 12Wm22

and B0 5 11Wm22, based on Eqs. (5) and (6), respectively].

This does not imply that the SFE and Budyko equations are

perfect models of multiyear mean annual E. Rather, it implies

that they all perform at least as well as themost accurate model

our analysis is capable of assessing. Differences in error sta-

tistics between models that occur below the RMSE0 and B0

thresholds cannot be distinguished from errors in the reference

dataset, and should not be attributed to differences in model

performance. This is particularly important for models with

calibration parameters, such as the calibrated Budyko model

(Fig. 2d), which are susceptible to overfitting. For this reason,

we do not compare SFE to a broader set of more complicated

E models.

In contrast to SFE and the Budyko models, the Priestley–

Taylor equation performs much less well (Fig. 2b). Both

RMSE and B are substantially higher than equivalent esti-

mates for the SFE and Budyko models. They are also larger

than RMSE0 and B0, respectively. This is expected, since the

Priestley–Taylor equation is a model of E from a saturated

surface, and most catchments are not saturated. However, it

demonstrates that the reference E, while subject to errors, is

capable of distinguishing between E models that are known to

be broadly accurate at multiyear mean time scales (the Budyko

equations) and those that are expected to be inaccurate (the

Priestley–Taylor equation). Therefore, the good performance

of SFE is not an artifact caused by overwhelmingly large ob-

servation errors in the catchment water balance E estimates.

Surprisingly, SFE also performs substantially better than the

reanalysis estimate of lE (Fig. 2c). Like the Priestley–Taylor
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equation, the reanalysis exhibits errors that are unlikely to be

artifacts caused by errors in the catchment water balance es-

timate (RMSE . RMSE0, B . B0). These results are consis-

tent with recent work that also identified a positive bias in

NARR E at multiyear mean annual time scales (Yin et al.

2019), and demonstrate that more complex products are not

necessarily more accurate. For completeness, a comparison

between the reanalysis and SFE is provided across North

America in Figs. 3a–c. Time series at three representative sites

are also provided (Figs. 3d–f). In some drier sites, the SFE

estimate is greater than the reanalysis estimate (Fig. 3d); at

other sites, the reanalysis estimate is greater than the SFE es-

timate (Fig. 3f). In general, it is difficult to attribute differences

between the products (Fig. 3c) to errors in either the reanalysis

or SFE estimate. The limited validation in Fig. 2 suggests that,

if anything, differences between SFE and reanalysis estimates

are more likely to be due to errors in the reanalysis than in the

SFE estimate. For this reason, more detailed comparisons

between the reanalysis and SFE are not pursued further in

this study.

Why not compare SFEwith a larger set ofE products? In our

view, a finer-grained comparison is not justified for at least two

reasons. First, there is little reason to believe that other diag-

nostic products will perform better than the reanalysis used

here. A recent comprehensive intercomparison study found

that none of the products evaluated demonstrated clear

superiority over estimates obtained from a reanalysis (Miralles

et al. 2016). Second, the significant errors present in even the

most accurate large-scale estimates of multiyear mean annual

E (the catchment water balance estimate) preclude a more

nuanced comparison between products. Differences in vali-

dation statistics between E estimates are not statistically

meaningful if they are within the observation error of the

catchment water balance estimate. In our notation, this cor-

responds to RMSE#RMSE0 and B# B0. Since errors in SFE

lie below these thresholds when compared with the catchment

water balance estimates (Fig. 2a), such a comparison would not

be capable of distinguishing differences in performance with

another E estimate, unless that estimate displays errors above

the thresholds RMSE0 and B0 [such as the Priestley–Taylor

equation or the reanalysis (Figs. 2b,c)]. While the choices of

RMSE0 and B0 are themselves uncertain, accounting for this

additional uncertainty in the analysis would only make it less

likely that differences in performance between models are

statistically meaningful.

The large uncertainty regarding model performance is an

unsatisfying reality of estimating large-scale E. In view of this

uncertainty, it is even more prudent to use simple models.

Unlike model performance, model complexity can be evalu-

ated with high precision. In this respect, SFE stands out as

simpler than most other methods, while maintaining relatively

low errors. The Budyko methods are simpler, but only apply to

FIG. 2. Comparison with reference multiyear mean annual lE of equivalent estimates from (a) SFE, (b) the Priestley–Taylor equation,

(c) the North American Regional Reanalysis (NARR), (d) the uncalibrated Budyko equation, and (e) the calibrated Budyko equation.

Reference multiyear mean annual E is obtained from a catchment water balance. RMSE is root-mean-square error, and RMSE0 is the

RMSE expected solely from errors in the reference lE (12Wm22); B is mean bias, and B0 is the bias expected solely from errors in

the reference lE (11Wm22). Shaded areas and color bars show the estimated joint empirical distribution functions of variables listed on

the horizontal and vertical axes. Dashed diagonal lines are 1:1 lines. For reference, 1Wm22 5 12.872mmyr21.

770 JOURNAL OF HYDROMETEOROLOGY VOLUME 22

Brought to you by Harvard Library Information and Technical Services | Unauthenticated | Downloaded 03/23/21 02:56 PM UTC



multiyear mean annual time scales, whereas SFE is applicable

at daily to monthly time scales (McColl and Rigden 2020).

Priestley–TaylorE is also simpler than SFE, and also applies at

daily tomonthly time scales, but its performance is much worse

than that of both SFE, and that of a perfect model (RMSE .
RMSE0, B . B0).

In summary, these results demonstrate that SFE is able to

estimate multiyear mean annual E quite well at spatial scales

relevant to climate studies. Errors in SFE estimates are com-

parable to errors in the catchment water balance estimates

themselves. This work builds on previous work that established

SFE is also relatively accurate at estimating daily to monthly E

at the quasi-point scale provided by eddy covariance data

(McColl and Rigden 2020).

b. Evaluation of CMIP6 model output at the

catchment scale

Overall, SFE estimates of lE are typically at least as accu-

rate (when forced with climate model T, q, and Rn) compared

with the climate model’s own simulated lE, where the catch-

ment water balance is used as a reference dataset (Figs. 4–6).

The climate model lE RMSE is distinguishable from that of a

perfect model (greater than RMSE0) for 73% of CMIP6

models, whereas the equivalent SFE estimates are typically

below the threshold (RMSE . RMSE0 for 8% of CMIP6

models). The thresholds RMSE0 and B0 vary between CMIP6

models because different catchments are used to estimate

RMSE and B for each model. For mean bias B, the CMIP6

model lE mean bias is mostly indistinguishable from that of a

perfect model, with B . B0 for only 19% of models. None of

the SFE estimates exhibit a mean bias distinguishable from

that of a perfect model.

Repeating the analysis, but restricting it to a common set of

catchments results in N 5 8 catchments. This allows a fair

comparison between CMIP6 models, but at the cost of reducing

the precision of the estimates of RMSE and B due to the low

sample size. The results are broadly similar for both analyses,

although with some differences (Fig. 7): RMSE . RMSE0 for

92% of models, compared to 53% when using SFE estimates;

andB.B0 for 27%ofmodels, compared to 4%when using SFE

estimates. Since the focus of this study is on SFE, rather than

differences betweenCMIP6models, we focus on results in Fig. 6,

rather than Fig. 7 for the remainder of the manuscript.

These results demonstrate that SFE is recreated quite well

within a broad range of climate models. Surprisingly, in many

cases, the SFE lE estimate, forced with climate model T, q, and

FIG. 3. Comparison over North America between NARR reanalysis lE and lE estimated using SFE with NARR air temperature,

NARR specific humidity, andCERESnet radiation as inputs. (a)–(c)Maps showmultiyear annualmean lE, with regionswithin 250 kmof

a coast or large waterbody removed, since SFE is not expected to hold in coastal regions. (d)–(f) Time series are presented for three

locations (grid cells in the NARR reanalysis), identified on the map in (c). For reference, 1Wm22 5 12.872mmyr21.
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Rn, exhibits better error statistics than the climate model’s own

simulated lE. More specifically, the SFE lE estimate has lower

RMSE compared with the climate model’s simulated lE for

100%ofmodels, using the results presented in Fig. 6, and for 85%

ofmodels, using the results presented in Fig. 7. This is likely due to

several factors. First, the difference in error statistics is not nec-

essarily statistically significant, given uncertainties in the catch-

ment water balanceET estimatementioned previously. Second, it

is possible that near-surface atmospheric variables, used as inputs

to the SFE estimate of lE, may have received more attention in

model development, compared with surface fluxes, such as lE,

since measurements of near-surface atmospheric variables are

more common than those for surface fluxes. If near-surface at-

mospheric quantities are relatively more accurate in models,

compared with surface fluxes, this may partially explain the su-

perior performance of the SFE estimate in some cases. Third,

averaging over the period 2001–14 is an imperfect estimate of the

climatology that may neglect, for example, some decadal vari-

ability, and it is possible that this may bias the results.

c. Global spatial comparison between SFE and CMIP6

model output

To further evaluate the extent to which SFE is reproduced in

CMIP6 models, the model simulated E is compared directly

FIG. 4. Comparison between multiyear mean annual CMIP6 model lE and reference lE for 16 different CMIP6 models. Each dot

corresponds to the multiyear (2001–14) mean annual E at one catchment. RMSE is root-mean-square error; B is mean bias, and N is the

number of catchments used in each comparison. Solid diagonal lines are 1:1 lines. CMIP6 model names are listed above each plot. For

reference, 1Wm22 5 12.872mmyr21.
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with E estimated within the model using SFE. Specifically,

maps of multimodel mean annual lE over the period 2001–14

are estimated across all land areas, using all 26 available

CMIP6 models (Fig. 8a). Then, for each CMIP6 model, Eq. (1)

is also used to estimate lE, using CMIP6model outputs of q,T,

and Rn. The resulting multimodel mean annual estimate ob-

tained from SFE is presented in Fig. 8b. Differences in the SFE

estimates compared with the CMIP6 model estimates are

quantified in terms of mean bias (Fig. 8c) and RMSE (Fig. 8d).

Differences between the two estimates may be due to defi-

ciencies in the SFE theory in particular regions, or to defi-

ciencies in the CMIP6 models. Like other E models (e.g.,

Salvucci and Gentine 2013; Miralles et al. 2016), SFE tends to

overestimate in regions where lE is particularly low, and un-

derestimate in regions where lE is particularly high (McColl

and Rigden 2020). This is consistent with positive biases in SFE

over the Sahara, the Middle East, and most of Australia

(Fig. 8c). There are limited ground observations of E in these

regions, and none at the scales relevant to climate models.

However, it has been shown that SFE does systematically

overestimate lE when compared with eddy covariance ob-

servations during the dry season in northernAustralia (McColl

and Rigden 2020). On the other hand, the land–atmosphere

feedback mechanisms that are essential to SFE have known

deficiencies in climate models (e.g., Green et al. 2017). Overall,

we are not able to definitively adjudicate between the two

FIG. 5. As in Fig. 4, but comparing multiyear mean annual SFE estimates to the reference estimate, where SFE estimates are obtained

using CMIP6 model outputs of near-surface air temperature, specific humidity, and net radiation as inputs to Eq. (1). For reference,

1Wm22 5 12.872mmyr21.
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explanations. It is likely that they both contribute to the ob-

served differences. Differences between the SFE and CMIP6

model estimates are relatively small, as a fraction of the total

lE (Fig. 8d compared with Fig. 8a), at least in regions where

most of the world’s E occurs.

d. Temporal comparison between SFE and CMIP6 model
output at focus sites

To assess the degree to which SFE accurately represents

temporal variability in E, monthly time series of CMIP6

model-simulated lE are compared with equivalent SFE

estimates at eight ‘‘focus sites’’ (Fig. 9). The focus sites

are chosen to span a broad range of continents, ecosystem

types and annual mean E. In nonarid regions (Figs. 9a–f),

the SFE time series estimates agree well with the CMIP6

simulations. At the two arid sites in the Sahara and

central Australia (Figs. 9g,h), SFE consistently overesti-

mates lE relative to the CMIP6 simulations. Overall, these

results demonstrate that, outside the most arid regions, the

SFE estimates reproduce the seasonal dynamics of the

CMIP6 models’ simulated lE quite well. This significantly

differentiates SFE from the Budyko model described in

section 2, which is not capable of estimating lE at monthly

time scales.

FIG. 6. Summary of statistical metrics presented in Figs. 4 and 5. RMSE is root-mean-

square error; B is mean bias. Ref is the expected error due to errors in the catchment water

balance estimates, and differs betweenmodels because a different set of catchments was used

in each comparison, depending on each model’s spatial resolution. For reference, 1Wm22 5
12.872mmyr21.

FIG. 7. As in Fig. 6, but using a consistent set of eight catchments to estimate validation

statistics for eachmodel. TheRMSE for FGOALS-f3-L is 41.9Wm22; this value is not visible

on these axes, which are kept the same as Fig. 6 for easier comparison. For reference, 1Wm225
12.872mmyr21.
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e. Limitations

This section discusses limitations of our analysis, beyond

those already discussed in previous sections. SFE is not

expected to hold at subdaily time scales, since the atmo-

sphere does not respond instantaneously to changes in sur-

face fluxes; at subdaily time scales, E must still be estimated

implicitly by numerically solving the surface energy budget

coupled with diffusive expressions for surface fluxes, or by

using explicit, approximate solutions of the same set of

equations (Monteith 1965; Penman 1948; McColl 2020).

SFE is also not expected to hold outside inland continental

regions. In coastal land regions, moisture and heat conver-

gence contribute significantly to the near-surface relative

humidity budget, in violation of the assumptions of SFE. In

addition, it is not expected that SFE will hold over oceans,

where the dominant terms in the boundary layer moisture

and temperature budgets are fundamentally different to

those over land. Furthermore, we do not necessarily expect

that SFE will continue to hold in substantially different past

or future climates. Even in inland continental regions, SFE

systematically overestimates E somewhat when E is low,

and underestimates it when E is high in both climate models

(Fig. 8c) and observations (McColl and Rigden 2020), al-

though such biases are observed in more complex models,

too (Salvucci and Gentine 2013; Miralles et al. 2016).

Nevertheless, SFE clearly explains much of the observed

spatial and temporal variability in lE within both existing

observations (Fig. 2; McColl and Rigden 2020) and CMIP6

models (Figs. 8 and 9).

f. Relation to previous work

In an important early study, Barton (1979) proposed that the

latent heat flux from an unsaturated surface could be estimated

using the equation

lE5a
s«

s«1 1
R

n
, (7)

where s is the ratio of the vapor pressure to the saturated vapor

pressure evaluated at the evaporating surface [this corresponds

to Eq. (7) of Barton (1979), but with ground heat flux ne-

glected, for consistency with assumptions used in this study].

This relation is remarkably similar to Eq. (1), which can be

written as

lE5
RH«

RH«1 1
R

n
, (8)

where RH is the near-surface relative humidity, typically

estimated several meters above the evaporating surface.

However, Barton’s equation differs from Eq. (1) in several

respects. First, it retains the empirical Priestley–Taylor pa-

rameter, whereas SFE discards it. Second, it uses the quantity

s rather than RH, and these two quantities can differ sub-

stantially. Barton specifically acknowledged this point in his

study: ‘‘With nonsaturated surfaces the value of s can be

vastly different to the relative humidity just above the surface;

thus to avoid confusion, s is not referred to as the surface

relative humidity’’ (italics from the original). Third, s is a

property of the evaporating surface, meaning that land sur-

face information is required to estimate it (Barton relates it to

FIG. 8. Maps of CMIP6 multimodel, multiyear mean annual (a) lE; (b) SFE lE, estimated using CMIP6 model

near-surface air temperature, specific humidity, and net radiation as inputs; (c) mean bias (SFE lE minus CMIP6

model lE); and (d) RMSE between SFE and CMIP6 model lE. The same color bar scale is used for (a), (b), and

(d) to allow visual comparison of RMSE and mean lE. For reference, 1Wm22 5 12.872mmyr21.
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soil moisture), whereas no land surface information is required

by SFE. The key insight of SFE is that land–atmosphere feed-

backs embed information on water limitation occurring at the

evaporating surface in the near-surface atmospheric state. Thus,

while the two equations appear similar, the differences between

them are rather significant, both in terms of their practical ap-

plication, and in terms of their governing physics.

A similar class of approaches based on the ‘‘complementary

relationship’’ is also capable of estimating E using minimal

land surface information. While there are many variants of the

complementary relationship found in the literature, to our

knowledge, none are as simple as SFE: in addition to inputs

required by SFE, they also either require a parameter (e.g.,

Kahler and Brutsaert 2006), or land surface information such

as soil moisture (e.g., Aminzadeh et al. 2016), or wind speed

(e.g., Ma and Szilagyi 2019).

A further advantage of SFE is that it can be used to estimate

the evaporative fraction (EF5 lE/Rn) without requiring Rn as

FIG. 9. Time series (2000–02) at eight sites of multimodel mean lE obtained directly from CMIP6 models (red)

and from SFE (blue), using CMIP6 model near-surface air temperature, specific humidity, and net radiation as

inputs. Locations of each site are shown on the map. Dashed lines are 90% confidence intervals. RMSE is root-

mean-square error between CMIP6 models and SFE. Land cover types for each site are displayed in the top-left

corner of each subplot: ENF is evergreen needleleaf forest, MF is mixed forest, GRA is grasslands, DNF is de-

ciduous needleleaf forest, CRO is cropland, BSV is barren/sparse vegetation, and OSH is open shrubland. For

reference, 1Wm22 5 12.872mmyr21.
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an input, simply by dividing Eq. (1) by Rn. The evaporative

fraction is a useful diagnostic of surface energy balance parti-

tioning (e.g., Gentine et al. 2011). In contrast, the Budyko re-

lations [Eqs. (3) and (4)] cannot be written in this way: dividing

these equations byRn does not eliminate dependence onRn on

the right-hand side of the equation. This property of SFE is

useful because Rn is the variable for which fewest observations

are typically available. This limitation has motivated the recent

development of a variant of the Budyko relation that is capable

of estimating EF without requiring Rn (Yin et al. 2019). Like

other versions of the Budyko relation, this relation applies to

multiyear mean annual values. In contrast, SFE also holds at

daily and monthly time scales.

4. Summary and conclusions

This study has tested the empirical validity of SFE—a

maximally simple model of the Bowen ratio in continental

regions at daily to monthly time scales—at large spatial scales

relevant to studies of climate. The only inputs required by the

model are near-surface air temperature and specific humidity;

information on land surface constraints is assumed to become

embedded in the near-surface atmospheric state by strong

land–atmosphere coupling. By combining this prediction with

observations of net radiation, estimates of lE are obtained.

The accuracy of the SFE lE estimates was evaluated by

comparing with estimates of multiyear mean annual lE ob-

tained from catchment water balances for 221 catchments

across the United States. While catchment water balance es-

timates of multiyear mean annual lE are widely regarded as

one of the more accurate estimates of large-scale lE, they

contain their own errors that can be significant; hence, even a

perfect model would display errors when evaluated against the

catchment water balance lE estimate. By using a reasonable

estimate of errors inherent to the catchment water balance lE,

it was shown that the SFE lE estimate displayed error statistics

that were indistinguishable from those of a perfect model. Two

different functional forms of the Budyko relation were simi-

larly indistinguishable from a perfect model. On the other

hand, estimates from the Priestley–Taylor equation and a re-

analysis were not. While the poorer performance of the

Priestley–Taylor equation was expected, since it applies to

saturated surfaces and most catchments are not saturated, it

demonstrated that our comparison was capable of broadly

distinguishing between accurate and inaccurate models of lE.

After establishing the reasonable performance of SFE at

large scales, we evaluated its performance in 26 climate models

from CMIP6 historical simulations. Model SFE estimates

[obtained using Eq. (1) with CMIP6 model outputs of q, T, and

Rn] were typically at least as accurate as the model’s own

lE output, when evaluated against catchment water balance

lE estimates. The model’s SFE estimate and its simulated lE

output displayed broad agreement both in space and time. An

exception to this was found in very dry regions, such as the

Sahara, central Australia, and parts of the Middle East, where

the SFE estimate was systematically higher. This difference

may be due to errors in the SFE estimate, or in the climate

models, or a combination of both.

Future studies should investigate the degree to which SFE

holds in past and future climates. If SFE holds reasonably, it

may be possible to reconstruct time series of the Bowen ratio

using readily available weather station data, which have more

substantial spatial and temporal coverage compared with eddy

covariance data. It may also be possible to combine proxy

records of temperature and humidity with SFE to reconstruct

the Bowen ratio further back in time, to better constrain the

terrestrial water cycle on paleoclimatic time scales. Comparisons

between SFE E estimates and a broader set of reanalysis and

satellite E products may also be useful.
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