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The terrestrial water cycle in a warming world
Climate model projections of the terrestrial water cycle are often described using simple empirical models 
(‘indices’) that can mislead. Instead, we should seek to understand climate model projections using simple  
physical models.

Kaighin A. McColl, Michael L. Roderick, Alexis Berg and Jacob Scheff

Future changes to droughts, floods, 
heatwaves and wildfires all depend on 
changes to the water cycle in a warming 

world. Changes in these extremes are not just 
determined by changes in precipitation, but 
also by changes in land surface water fluxes 
(including evaporation, transpiration and 
runoff) and storages (including soil moisture, 
vegetation and groundwater). In order to 
depict this future, climate science must rely 
on models. For example, a climate model can 
be run under a particular emissions scenario 
to observe how precipitation, soil moisture 
or runoff simulated by the model changes 
with time. Climate scientists should not 
blindly believe everything the model says, but 
it provides a physically plausible response, 
which integrates changes to different 
hydrological mechanisms in a physically 
consistent manner.

Instead of directly describing water 
storages or fluxes simulated by climate 
models, it has become common in climate 
change impact studies to use simple empirical 
models of ‘dryness’, ‘aridity’ or ‘drought’, which 
are calculated using simulated variables from 
climate models and are interpreted broadly 
as proxies for hydrological or ecosystem 
variables. The main reason for their use is 
historical: the relative lack of observations for 
most water storages and fluxes as compared 
with widely available meteorological data 

(such as precipitation and temperature) 
led to the historical development of an 
array of simple empirical models based on 
precipitation and temperature. The simple 
empirical models focused on here are often 
termed ‘indices’, so we shall use the terms 

interchangeably while recognizing that the 
term ‘index’ can be used more broadly. One 
prominent example is the ‘aridity index’ 
(AI), the ratio of precipitation to potential 
evapotranspiration (also sometimes defined 
as the reciprocal and called the ‘dryness 
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index’). The long-standing conceptual model 
of Budyko1 relates the AI to the partitioning 
of precipitation between evapotranspiration 
and runoff; specifically, a higher AI implies 
a higher ‘runoff ratio’, the ratio of the long-
term mean annual runoff to the long-term 
mean annual precipitation. However, its 
scope has broadened substantially and it 
often seems to be interpreted as a general 
measure of land surface ‘dryness’: for instance, 
it is used explicitly in the definition of 
‘drylands’ adopted by the United Nations2 
and is regularly compared to other hydrologic 
variables, such as soil moisture and relative 
humidity. Other examples of widely used 
simple empirical models include the Palmer 
Drought Severity Index3, the Standardized 
Precipitation Evapotranspiration Index4 and 
other variants, which undergird key IPCC 
drought results5.

redundancy, bias and ambiguity
We argue that the use of such simple 
empirical models in describing climate 
model projections is often undesirable 
for at least three reasons. First, their use 
is often redundant. Many indices were 
originally introduced to circumvent data 
limitations. However, inside a climate 
model, data limitations are typically not 
a problem because the climate model 
provides a complete view of the simulated 
Earth system, including land hydrology 
and ecosystems. If one is interested in how 
soil moisture may change in a warming 
world, for example, then it is better simply 
to examine the soil moisture variable in the 
climate model making the projection, rather 
than an index based on other modelled 
variables that is only approximately related 
to soil moisture6–8. A common response 
to this point is that land surface models 
exhibit larger errors than atmospheric 
models, so, when analysing climate model 
outputs, it is preferable to use indices of 
surface quantities that are based on variables 
from the atmospheric component of the 
climate model, like the AI, rather than 
the land surface component. We agree 
that land surface models exhibit major 
uncertainties, but as they are tightly coupled 
to the atmospheric model, errors in one 
propagate rapidly to the other near the land 
surface9–11. Thus, there is no reason to favour 
an atmospheric model over a land surface 
model near the land surface. The solution to 
problems with climate models is not to build 
new offline empirical models on top of them 
but to improve climate models12. Beyond 
the AI, the broader point is that parsimony 
should be valued by eliminating indices that 
outlive their usefulness and introducing new 
indices only when there is no reasonable 
existing alternative.

Second, an index that is a reliable proxy 
of a particular water storage or flux in the 
current climate may be substantially biased 
in future climates. If an index explains 
spatial variability in the present climate, it is 
often assumed that it can explain temporal 
variability as the planet warms, but that 
assumption (space-for-time substitution) 
may be badly wrong in a non-stationary 
environment. An example of this is the 
non-radiative effect of CO2 on plants, 
which causes the leaves of most plants to 
fix more carbon for a given amount of 
water loss, all else being equal. CO2 is well 
mixed in the atmosphere, meaning that, 
in the current climate, plants are exposed 
to roughly similar concentrations of CO2. 
Therefore, CO2 does not explain much 
spatial variability in transpiration in the 
current climate, and indices such as the 
traditional AI do not directly include 
CO2 concentrations in their formulation. 
However, CO2 rises in a warming world, and 
non-radiative effects of CO2 on plants have 
a first-order impact on changes to the water 
cycle, at least in model projections11,13,14. 
The AI misses these and other15 effects, and 
leads to substantially biased projections8,16. 
Specifically, the projected AI declines rapidly 
in most parts of the world, which should 
imply rapidly declining runoff ratios; yet 
the directly simulated runoff ratios do not 
reflect this and even increase in many parts 
of the world8,12,15. Similarly, the standard 
definition of a ‘dryland’ is based on the AI, 
and so models project rapid and widespread 
expansion of drylands under warming. 
Yet the same models project substantial 
plant growth in many of the same regions 
projected to become drylands on the basis 
of the AI, which is inconsistent17,18. Using 
an alternative index to define drylands 
— specifically designed to reproduce the 
spatial distribution of drylands produced 
by the AI in the current climate but 
defined in terms of plant and land surface 
properties rather than precipitation and 
temperature — results in projections of no 
dryland expansion, on average, in a warmer 
world18; in other words, projected global 
dryland expansion is an artefact of the AI. 
Beyond the AI, the broader principle is 
that one should not needlessly extrapolate 
an empirical index that has been designed 
for the present climate into the future, just 
as one should not needlessly extrapolate 
a statistical model beyond the period for 
which it was constructed.

Third, indices often introduce definitional 
ambiguity that slows scientific progress. 
Concepts such as ‘dryness’, ‘aridity’ and 
‘drought’ have multiple definitions in the 
literature, often associated with a particular 
index. These terms are multifaceted, and there 

is room for different perspectives. However, 
there is a tendency for definitional ambiguity 
to creep in, which can render the index 
unfalsifiable. For example, it is common to 
compare the AI and other indices to a range 
of hydrologic and ecosystem variables, even 
though the AI is only linked mechanistically 
to the runoff ratio and associated quantities. 
This is a problem because different hydrologic 
variables behave differently as the planet 
warms: for example, global mean surface soil 
moisture is projected to decrease, whereas 
global mean runoff is projected to increase15. 
If the AI poorly matches the runoff ratio, 
it will probably at least qualitatively match 
another hydrologic variable. The definitional 
ambiguity allows the AI to then be defended 
as tracking at least some aspects of ‘aridity’ or 
other ambiguous terms.

Back to fundamentals
For these reasons, we recommend that 
simple empirical models should not be used 
in describing climate model projections 
unless (1) there is no reasonable alternative 
and (2) the index is precisely related to a 
hydrologic flux or storage by clear physical 
mechanisms and thus makes testable 
predictions. For example, the use of the 
AI in studies of times or places where the 
runoff ratio has not been measured would 
satisfy (1) because the AI can be interpreted 
as a proxy for the runoff ratio, but its use to 
describe climate model projections of the 
runoff ratio would not, because the runoff 
ratio — and, more importantly, the runoff 
itself — can be described directly using 
outputs from the climate model. If the AI is 
interpreted solely as a proxy for the runoff 
ratio using Budyko’s conceptual model1, 
then it arguably satisfies (2), but when 
interpreted as a broader measure of ‘aridity’, 
as is common, it does not. In practice, it 
is almost always better to describe climate 
model projections in terms of the climate 
model’s simulated water storages and fluxes, 
rather than with the use of an index.

We have outlined various problems 
with simple empirical models but do not 
suggest that full-complexity climate models 
are the only useful tool for studying future 
changes to the water cycle. Indeed, simple 
physical models — models derived from 
clear physical arguments that distil a process 
down to its most fundamental mechanisms 
— remain critical to understanding and 
scientific progress. A complete review 
is beyond the scope of this Comment, 
but two recent examples are a theory of 
changes in relative humidity over land19 
and a simple model of potential net cooling 
effects from mid-latitude afforestation due 
to clouds20. Projected changes to the water 
cycle simulated by full-complexity climate 
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models are more robust when they can be 
reproduced, at least qualitatively, by simple 
physical models21.

In summary, we do not recommend 
using simple empirical models to describe 
full-complexity climate model projections, 
but we do recommend the use of simple 
physical models to understand them.
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