
1. Introduction
Seasonal snow is a major water resource and meltwater from snowpack provides vital water supply around the 
world (Bormann et al., 2018; Tedesco & Narvekar, 2010). Due to its high solar reflectivity and thermodynamic 
properties, seasonal snow has substantial influences on the partitioning of energy between the land and atmos-
phere (Flanner et  al.,  2011; Lu et  al.,  2016). Moreover, snow cover has significant implications for the soil 
freeze-thaw process, soil carbon dioxide efflux, and alpine vegetation growth (Li et  al., 2021; Zhang, 2005). 
A good knowledge of snowpack information is of great significance for various practical applications, such as 
hydropower, drought and flood predictions, and irrigation scheduling at regional and hemispheric scales (Clark 
et al., 2011; Dai et al., 2012; Han et al., 2019).

Passive microwave technology has become one of the most viable options for monitoring snow depth (SD) at 
continental scales due to its high sensitivity to snow permittivity and its 24-hr all-weather coverage capability 
(Clifford, 2010). In the last few decades, a number of activities have been devoted to obtaining SD by using 
multichannel and multiband passive microwave instruments (Armstrong & Brodzik, 2002; Chang et al., 1987). 
The Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the Global Change Observation Mission 
1-Water (GCOM-W1) is the successor of the AMSR-E (Cho et al., 2017; Imaoka et al., 2012). Although the 
current AMSR2 SD algorithm is widely used to estimate global SD, its performance has not been fully evalu-
ated on a hemispherical scale. Understanding the skill and possible error sources of the AMSR2 SD product is 
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crucial for their utilization in practical applications, and also improves our knowledge on how they can be further 
improved. In addition to estimating SD from satellites, in situ measurements and land surface models (LSMs) 
can also provide useful SD information. In situ SD measurements are able to well represent the true SD values at 
the point scale; therefore, they are usually used for the evaluation of both satellite-based and model-simulated SD 
data sets. However, in situ SD measurements have limitations in the large-scale spatial representation, particularly 
for hemispheric-scale data analysis. In response to this challenge, some studies have attempted to use various 
interpolation techniques to obtain spatial SD from in situ measurements (Erxleben et al., 2002; Hudson & Wack-
ernagel, 2010), but these interpolation approaches are negatively affected by the sparse in situ measurements, 
especially in high-altitude areas (Dyer & Mote, 2006; Kitaev et al., 2002). The Canadian Meteorological Centre 
(CMC) generates a daily gridded Northern Hemisphere SD data set, integrating all available ground measure-
ments with a simple snow model (Rutter et al., 2008) to offset the effect of sparse in situ observations. However, 
this product is still limited by ground observations and complex terrain, and its uncertainties remain to be ascer-
tained. LSMs are considered as another promising tool for producing long-term SD data, and the generation 
mechanisms are usually based on physical equations that estimate the mass and energy balance among the snow, 
soil, and atmosphere (Davis et al., 1995). Many LSMs and reanalysis SD data sets are now available, includ-
ing the Global Land Data Assimilation System (GLDAS; Rodell et al., 2004), the NASA Modern-Era Retro-
spective Analysis for Research and Applications (MERRA2; 0.625° × 0.5°; Gelaro et al., 2017), the European 
Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim; 0.75° × 0.75°; Dee 
et al., 2011), and the Japanese 55-year Reanalysis (JRA-55; 0.55° × 0.55°; Kobayashi et al., 2015). GLDAS-2.1 
is a newly available GLDAS data set with a high grid resolution (0.25° × 0.25°). The grid resolution of GLDAS-
2.1 is consistent with that of the commonly used satellite SD products (e.g., AMSR2). However, uncertainties 
from the model structure and atmospheric forcing data may introduce errors to the LSM simulations such as 
the GLDAS SD. All of the above-mentioned products are obtained from measurement systems, such as LSMs, 
satellite and ground-based observation networks, which are susceptible to numerous error sources, including 
the difference between the point-scale SD ground observations and the larger-scale SD quantity of relevance to 
models and satellite observations, sensor calibration, and underlying model assumptions and parametrization. 
Therefore, characterizing the uncertainty of different SD data sets is critical for their improvement and applica-
tion in scientific studies.

During the past few decades, extensive validation activities have been carried out to examine the accuracy 
of satellite-based and model-based SD products at various spatiotemporal scales (Broxton et  al.,  2016; Kim 
et al., 2021; Mortimer et al., 2020; Mudryk et al., 2015), and they have mostly used in situ observations as the 
true values (Larue et al., 2017; Liu et al., 2014). However, assessing the skill of grid-scale satellite- and model-
based SD products by using single-point ground SD measurements is challenging due to the inherent spatial 
mismatch between them as well as the possible errors of the in situ SD data. The triple collocation (TC) approach 
provides a powerful solution for estimating errors in three independent data sets without requiring the true value 
(Stoffelen, 1998). It has been widely used to characterize uncertainties in many geophysical parameter prod-
ucts, including soil moisture (Chen et al., 2018), precipitation (Li et al., 2018), sea surface temperature (O'Car-
roll et al., 2008), land surface freeze/thaw state (Lyu et al., 2018; McColl et al., 2016), and wave height (Liu 
et al., 2016). More recently, McColl et al. (2014) introduced a variant of TC called the extended triple collocation 
(ETC). This technique derives an additional performance metric (the temporal correlation) making this approach 
more appropriate for estimating errors in the geophysical parameters. Although TC/ETC has been recently widely 
used for characterizing uncertainties in many geophysical parameter products, to the best of our knowledge, it has 
not been applied to evaluate snow variables (e.g., SD) at a continental scale. Moreover, the performance of the 
global SD products under different conditions (e.g., land cover, climate, forest cover fraction, snow class, surface 
roughness, and land cover heterogeneity) has not yet been comprehensively investigated, but is believed to be 
very helpful for their utilization and improvement. This study gives the first attempt to apply ETC to evaluate the 
performance of three different types of SD products, namely ground-based analysis SD (CMC), satellite-based 
SD (AMSR2), and model-simulated SD (GLDAS), on a hemispheric scale, and examines the error characteristics 
and limitations of these products under various land surface conditions.

The objectives of this study are: (a) investigate hemispheric-scale error patterns of the CMC, AMSR2, and 
GLDAS using the ETC method; and (b) analyze the skill of the three SD data sets under diverse conditions, 
including land cover classification, forest cover fraction, snow class, surface roughness, land cover heterogeneity, 
and climate type. This paper is organized as follows: Section 2 briefly introduces the three SD products from 
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ground-based analysis, satellite, and reanalysis SD products as well as the ancillary data. Section 3 describes 
the data-processing procedures and ETC method. Section 4 presents the results concerning the evaluation of 
CMC, AMSR2, and GLDAS SD via ETC. The discussions are presented in Section 5. The main conclusions are 
provided in Section 6.

2. Data
Table 1 presents the main information of the three SD products (CMC, AMSR2, and GLDAS) used in this study. 
Due to the nature of radiometer observations, AMSR2 products are reliable only in regions with dry snow cover 
(Stiles & Ulaby, 1980; Walker & Goodison, 1993). Accordingly, the evaluation was performed for the winter 
season (December–February) from 2012 to 2017.

2.1. Canadian Meteorological Centre

The CMC daily SD analysis data set is generated using in situ daily SD measurements and optimal interpolation 
with a first-guess field generated from a simple snow accumulation and melt model (Brown et al., 2003). This 
product uses the statistical interpolation method to obtain spatial SD from in situ observations, including SD 
from surface synoptic observations, meteorological aviation reports, and special aviation reports from the World 
Meteorological Organization (WMO) information system. Over regions with sparse in situ observations, a simple 
snow model is used to generate an optimal interpolation with a first-guess field, which uses precipitation fore-
casts and screen-level temperature analysis to estimate snowfall and snowmelt for a global domain and assumes 
persistence of the mass of the snowpack between melting and/or snowfall events (Brasnett, 1999). This data set is 
available from the National Snow and Ice Data Center (https://nsidc.org/data/NSIDC-0447/versions/1).

2.2. Advanced Microwave Scanning Radiometer 2

The AMSR2 sensor is the successor of the AMSR-E, and it is onboard the JAXA GCOM-W1 satellite launched 
on May 18, 2012 (Okuyama & Imaoka,  2015). It provides brightness temperature (TB) ranging from 6.9 to 
89.0  GHz at horizontal and vertical polarizations. The current AMSR2 SD algorithm is an evolution of the 
original AMSR-E SD algorithm (Kelly, 2009), and it is based on the frequency difference method proposed by 
Chang et al. (1996). The AMSR2 SD algorithm undertakes a forest correction to reduce the uncertainties in the 
estimates of SD in forested areas. It estimates shallow snow and moderate snow accumulation using the 89 and 
37 GHz channels, respectively. For deep snow, the TB at 19 and 10 GHz are used to retrieve SD (Derksen, 2008). 
The JAXA provides SD products derived from AMSR2 with two grid resolutions (0.10° and 0.25°), and they 
can be obtained from the Globe Portal System (G-Portal; https://gportal.jaxa.jp/). To make a consistent and fair 
comparison, the AMSR2 SD product at 0.25° was used, and its spatial resolution was the same as that of GLDAS.

2.3. Global Land Data Assimilation System

GLDAS 2.1 is the latest version of GLDAS. GLDAS is a combination of LSM and data assimilation techniques 
used to generate land surface states and fluxes. GLDAS is forced by satellite and ground-based observational 
data products (Rodell et al., 2004). The GLDAS 2.1 simulation, covering 2000 to the present, is forced with 
the National Oceanic and Atmospheric Administration (NOAA)/Global Data Assimilation System (GDAS) 
atmospheric analysis fields (Derber et al., 1991), the spatially and temporally disaggregated Global Precipita-
tion Climatology Project (GPCP) precipitation fields (Adler et al., 2003), and the Air Force Weather Agency's 

Data sets Approach Spatial resolution Temporal coverage Reference

CMC In situ, interpolation, and melt model 24 × 24 km 2 1998.08–2018.12 Brasnett (1999);Brown 
et al. (2003)

AMSR2 Snow and brightness temperature difference (TBD) algorithm 0.25° × 0.25° 2012.07–present Kelly (2009)

GLDAS Noah-LSMs 0.25° × 0.25° 2000.01–present Rodell et al. (2004)

Table 1 
Main Characteristics of the CMC, AMSR2, and GLDAS SD Products

https://nsidc.org/data/NSIDC-0447/versions/1
https://gportal.jaxa.jp/
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AGRicultural METeorological modeling system (AGRMET) radiation fields. The SD data set used in this study 
was from GLDAS 2.1 Noah LSMs, and its spatial and temporal resolution is 0.25° and 3-hr, respectively (see 
Table 1). This data set is released by the NASA's Hydrology Data and Information Services Center (https://
hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/GLDAS_NOAH025_3H.2.1/).

2.4. Ancillary Data

To examine the influences of heterogeneous land cover types, the MODIS IGBP land cover classification data 
set (Friedl et al., 2002), with a spatial resolution of 500 m was used. This study considers only seven land cover 
classes, including forest, shrublands, savannas, grasslands, croplands, barren, and others. Considering the effect 
of surface roughness on the snow-depth retrieval modeling, the Global Land One-kilometre Based Elevation 
Digital Elevation Model (GLOBE DEM) data was adopted to characterize the surface roughness effects (Hastings 
& Dunbar, 1998). In addition, the snow-climate classification data set with a spatial resolution of 0.5° (Sturm 
et al., 1995) was used to assess the skill of SD data sets under various snow properties, which has been widely 
applied in many previous studies (Liu et al., 2014; Sturm et al., 2010). More details of this data set can be found 
in Sturm et al. (1995). Furthermore, to examine the skill of SD data sets under various climate conditions, the 
Koeppen-Geiger climate classification data set (Rubel & Kottek, 2010) was used.

3. Methodology
3.1. Data Pre-Processing

Since the CMC, AMSR2, and GLDAS data sets are distributed on different grids, the nearest neighbor approach 
was used to re-project the CMC SD data sets onto a uniform georeferenced 0.25° × 0.25° grid, the same as that 
of AMSR2 and GLDAS SD product (Draper et al., 2013; Zeng et al., 2015). Compared with other resampling 
methods (e.g., bilinear interpolation, cubic convolution, and majority resampling), the advantage of the nearest 
neighbor interpolation method is that it is the fastest resampling method and minimizes changes to pixel values 
since no new values are created, and it has been widely used in the resampling of SD data (Liu et al., 2013; Xiao 
et al., 2020) as well as other geophysical parameter products, such as soil moisture (Zeng et al., 2020) and snow 
cover (Drusch et al., 2004). In addition, melt water in the snowpack can result in an increase of TB, particularly 
at frequencies above 30  GHz (Foster et  al.,  2005), leading to the difficulty in extracting SD information by 
microwave radiation under wet snow conditions. To minimize these effects, only nighttime data (e.g., AMSR2 
descending data and GLDAS data obtained from the average values at 00:00, 03:00, and 06:00) in the winter 
season (December–February) were selected in this study (Dai et al., 2017; Mudryk et al., 2015). In this study, we 
used a spatial averaging method to aggregate the 500 m MODIS IGBP land cover to the SD coarse resolution of 
0.25°, and then the dominant land cover within each 0.25° grid cell was adopted as the land cover for that grid 
cell. The original spatial resolution of the snow-climate classification data set and Koeppen-Geiger climate clas-
sification data set is 0.5°, which were resampled to 0.25° by using the nearest neighbor interpolation method. This 
study investigated only seasonal snow over land and the regions of open water and permanent snow and ice were 
excluded based on the MODIS IGBP classification. Moreover, there are no snow values in the tropical climate 
regions, and therefore these regions are also excluded in the study.

3.2. Extended Triple Collocation

We used ETC to assess the error structure of the three independent SD data sets (CMC, AMSR2, and GLDAS). 
TC is a statistical method that estimates the standard deviation (STD) (Stoffelen, 1998) and correlation coef-
ficient (McColl et al., 2014) without requiring the assumption that a given reference data set is free of errors 
(Gruber et al., 2016; Khan et al., 2018; Larue et al., 2017; McColl et al., 2014).

We briefly review the derivation of the ETC estimation equations provided in McColl et al. (2014). First, ETC 
assumes an error model, and its standard form is as follows:

𝑋𝑋𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑇𝑇 + 𝜀𝜀𝑖𝑖 (1)

where 𝐴𝐴 𝐴𝐴𝑖𝑖 is a measurement from the ith SD products (i = 1 is AMSR2, i = 2 is GLDAS, and i = 3 is CMC). T 
represents the true SD value. 𝐴𝐴 𝐴𝐴𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑖𝑖 are the systematic additive and multiplicative biases of ith data set with 

https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/GLDAS_NOAH025_3H.2.1/
https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/GLDAS_NOAH025_3H.2.1/
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respect to the true value, respectively. 𝐴𝐴 𝐴𝐴𝑖𝑖 represents the zero-mean random error. This is a standard error model 
that is often used (sometimes implicitly) in validation studies that do not use TC or ETC. Note that the error 
model does not assume that errors have zero mean, since it includes the term 𝐴𝐴 𝐴𝐴𝑖𝑖 , which does not need to be zero. 
Equation 1 is identical to the error model 𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝛽𝛽𝑖𝑖𝑇𝑇 + �̂�𝜀𝑖𝑖 where 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 represents random error with non-zero mean. 
This model is also capable of representing systematic spatial differences in errors (e.g., differences in errors 
between land cover types or climate regimes).

The covariance between different SD products is:

���(��,��) = �(����) − �(��)�(��)

= �����2
� + �����(� , ��) + �����(� , ��) + ���(��, ��)

 (2)

where 𝐴𝐴 𝐴𝐴2

𝑇𝑇
= 𝑉𝑉 𝑉𝑉𝑉𝑉(𝑇𝑇 ) . It is assumed that the errors from the independent sources are uncorrelated with each other 

(���(��, ��) = 0, � ≠ �) and the true value (���(� , ��) = 0) . While these assumptions are unlikely to be exactly 
correct, they are not unique to TC validation studies, and will be discussed in more detail below. Thus, Equation 2 
can be reduced to:

��� = ���(��,��) =

⎧

⎪

⎨

⎪

⎩

�����2
� (� ≠ �)

��2�2
� + �2

�� (� = �)
 (3)

We now have six equations, given by the six unique terms in the 3 × 3 covariance matrix (𝐴𝐴 𝐴𝐴11, 𝐴𝐴12, 𝐴𝐴13, 𝐴𝐴22, 𝐴𝐴23, 𝐴𝐴33 ), 
but more than six unknowns (𝐴𝐴 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3, 𝜎𝜎𝜀𝜀1 , 𝜎𝜎𝜀𝜀2 , 𝜎𝜎𝜀𝜀3 , 𝜎𝜎𝑇𝑇  ). Therefore, the system cannot be solved for the unknowns 
in its current form. However, by defining 𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝛽𝛽𝑖𝑖𝜎𝜎𝑇𝑇  , Equation 3 can be rewritten as:

𝐶𝐶𝑖𝑖𝑖𝑖 =

⎧
⎪
⎨
⎪
⎩

𝜃𝜃𝑖𝑖𝜃𝜃𝑖𝑖(𝑖𝑖 ≠ 𝑖𝑖)

𝜃𝜃𝑖𝑖
2
+ 𝜎𝜎2

𝜀𝜀𝑖𝑖
(𝑖𝑖 = 𝑖𝑖)

 (4)

We now have six equations and six unknowns (𝐴𝐴 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3, 𝜎𝜎𝜀𝜀1 , 𝜎𝜎𝜀𝜀2 , 𝜎𝜎𝜀𝜀3 ), meaning the system can be solved for the 
unknowns. Note that this transformation allows us to solve for 𝐴𝐴 𝐴𝐴𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝜀𝜀𝑖𝑖 , but not for 𝐴𝐴 𝐴𝐴𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑇𝑇  (which have both 
been absorbed into the combined term 𝐴𝐴 𝐴𝐴𝑖𝑖 ), and not for 𝐴𝐴 𝐴𝐴𝑖𝑖 (which cancel out and do not appear in the above equa-
tion). The resulting expression for the STD (i.e., 𝐴𝐴 𝐴𝐴𝜀𝜀 ) is:

�� =

⎡
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From Equation 5, using the definition of the correlation and covariance, 𝐴𝐴 𝐴𝐴𝑖𝑖 can be obtained:

𝜃𝜃𝑖𝑖 = 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑖𝑖

√
𝐶𝐶𝑖𝑖𝑖𝑖 (6)

The correlation coefficient (𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑖𝑖
 ) between T and Xi can be solved from Equation 6; it can be shown that:

𝑅𝑅𝑇𝑇𝑇𝑇𝑇 = ±

⎡
⎢
⎢
⎢
⎢
⎢
⎣

√
𝐶𝐶12𝐶𝐶13

𝐶𝐶11𝐶𝐶23

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝐶𝐶13𝐶𝐶23)

√
𝐶𝐶12𝐶𝐶23

𝐶𝐶22𝐶𝐶13

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝐶𝐶12𝐶𝐶23)

√
𝐶𝐶13𝐶𝐶23

𝐶𝐶33𝐶𝐶12

⎤
⎥
⎥
⎥
⎥
⎥
⎦

 (7)

The RT,X value denotes the temporal correlation between the product and the unknown truth, which refers to the 
commonly used Pearson's correlation coefficient (Beck et al., 2021; Chen et al., 2018; McColl et al., 2014). We 



Water Resources Research

QIAO ET AL.

10.1029/2021WR030895

6 of 23

emphasize that while ETC is not able to directly estimate 𝐴𝐴 𝐴𝐴𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑖𝑖 , this does not prevent the estimation of R and 
STD.

A full derivation of the ETC estimation equations has been provided, including its assumptions; however, we 
emphasize that ETC does not make significant new assumptions compared with a more standard validation 
analysis (Gruber et al., 2016). For example, consider a study that does not use TC, but instead assesses the perfor-
mance of a model of SD by estimating the correlation coefficient between the model's outputs and a ground truth 
measurement of SD, and interprets a higher correlation coefficient as meaning better model performance. Using 
the same error model for consistency (Equation 1), the estimated correlation coefficient 𝐴𝐴 �̂�𝑅 between the ground 
truth measurement (k = 1) and the model (k = 2) is then (Equation 9 of Gruber et al. (2016))

�̂ = �12
√

�11�22

=
�1�2�2

� + �2Cov(� , �1) + �1Cov(� , �2) + Cov(�1, �2)
√

(

�2
1�

2
� + 2�1Cov(� , �1) + �2

�1 )
(

�2
2�

2
� + 2�2Cov(� , �2) + �2

�2

) (8)

If the ground truth measurement is assumed to be free of errors (𝐴𝐴 𝐴𝐴1 = 0 , 𝐴𝐴 𝐴𝐴1 = 1 , and 𝐴𝐴 𝐴𝐴2

𝜀𝜀1
= 0 ), then this implies 

that Cov(�1, �2) = Cov(� , �1) = 0 , just as assumed in triple collocation. In addition, if a higher correlation coeffi-
cient is interpreted as meaning better model performance, then this interpretation requires the implicit assumption 
that Cov(� , �2) = 0 , just as in TC. If this assumption is not made, Equation 8 shows that a high correlation coef-
ficient could simply be an artifact of strong correlation between errors in the model and the true SD (i.e., large 
Cov(� , �2) ). In summary, the error assumptions made in TC are not new, and are routinely made in validation 
studies that do not use TC.

The main challenge in implementing ETC, rather than a conventional validation analysis, is in finding a third 
estimate of the geophysical variable of interest (in this study, SD) that is relatively independent of the other two 
estimates. Fortunately for this study, three such estimates exist for SD, but this may not be the case for other 
geophysical variables.

3.3. Application of ETC

Before we use the ETC method to calculate the errors in each SD product, we discarded values where SD is zero 
for all three products (e.g., low-latitude snow-free regions such as the barren land region below 30°N). However, 
for midlatitude to high-latitude regions, if the value of a product is occasionally 0, while that of the other two 
products are not 0, we have also performed ETC method in this case.

Several assumptions are made in the ETC method in order to make the system solvable, which have been discussed 
in detail in previous studies (e.g., Gruber et al., 2016). As mentioned in the previous section, most of the assump-
tions discussed here are not unique to TC; they are also assumed in traditional validation analyses, albeit implic-
itly. As a prerequisite of ETC, three independent data sets should be prepared (corresponding to the assumption 
regarding zero correlation between the errors of the three data sets). The smaller the correlation between errors 
in different products, the smaller the error of ETC results (McColl et al., 2014; Yilmaz & Crow, 2014). Thus, the 
choice of data sets needs to be carefully considered before applying the ETC approach. The reasons of selecting 
three SD products in this study were as follows: first, three products need to meet the fundamental assumption of 
the ETC method that the three products should be independent. At present, the acquisition of SD data is mainly 
through in situ measurement, passive microwave remote sensing observation and model simulation. Therefore, 
though many SD products are available, three data sets including the ground-based analysis (CMC), the satel-
lite-based (AMSR2), and the model-based (GLDAS) SD products were selected to form the triplets required by 
the ETC method in this study. Their measurement technique and retrieval concept are fundamentally different, 
which suggests that the selected data sets in this study are likely to meet the zero error correlation requirements 
of the ETC method (Dorigo et al., 2010; Scipal et al., 2008). For the assumption concerning zero correlation 
between errors and the true signal (i.e., error orthogonality), Yilmaz and Crow (2014) pointed out that the effect 
of violating this assumption on the error variance estimates is negligible, because error non-orthogonality is 
dampened by the application of rescaling parameters or even compensated if the magnitude of nonorthogonality 
is approximately the same for all considered data sets. In terms of assumptions concerning the stationarity of the 
signal, a violation of signal stationarity does not affect ETC analysis per se, as it considers temporally collocated 
triplets, which differ from a hypothetical stationary mean and variance by the same magnitude. A violation of 
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stationarity of the errors would not harm the reliability of the estimated average error variance per se (Crow 
et al., 2005). In the ETC method, it is assumed that the error of a single product from different ETC triplets is 
stable. That is to say, if changing one product in the ETC triplet, the error of another two products will remain 
consistent. This have been demonstrated by previous studies (e.g., Dorigo et al., 2010), and they found that the 
errors estimated for another two products are hardly influenced by the choice of the third independent data set. In 
terms of the zero-mean error (𝐴𝐴 𝐴𝐴𝑖𝑖 in Equation 1), it should be noted that ETC can only estimate the random error 
component, but not the biases with respect to the truth. Apart from the abovementioned assumptions, the ETC 
needs temporally collocated data of the same geophysical variable to derive the STD and correlation coefficient. 
That is to say, for a given grid at a specific time, the ETC was applied only when all three data sets (triplet) were 
available. Previous studies found that a minimum number of 100 triplets is sufficient to apply the ETC approach 
(Miralles et al., 2011; Scipal et al., 2008), and if there are not enough triplets, the ETC results will be biased 
(McColl et al., 2014). In our study, we used SD data sets during the winters from 2012 to 2017, which meets the 
number of triplets (>100) required for ETC calculation.

3.4. Proxies for Error Analysis

In this study, three proxies were adopted to investigate the influences of the forest cover fraction, surface rough-
ness, and land cover heterogeneity on SD data sets. The forest cover fraction (ff) was calculated from the IGBP 
land cover data set, which was used to parameterize the effect of forest (Che et al., 2016; Lee et al., 2015). Note 
that other forest cover fraction products are also available to the public (e.g., Hansen et al., 2013). The Gini-Simp-
son index (GSI; Simpson, 1949) was calculated based on the land cover types from the IGBP land cover classifi-
cation data sets, which was used to describe the land cover heterogeneity (Ma et al., 2019). The surface roughness 
within each pixel of the SD product was obtained from the GLOBE DEM (Kim et al., 2015; Ma et al., 2019). The 
three proxies can be obtained through:

𝑓𝑓𝑓𝑓 =

∑

𝑖𝑖

𝑓𝑓𝑖𝑖 (9)

����ℎ���� = log�(���_��) (10)

𝐺𝐺𝐺𝐺𝐺𝐺 = 1 −
∑

𝑖𝑖

𝑝𝑝2𝑖𝑖 (11)

where fi is the proportion of pixels belonging to the IGBP forest class (i.e., evergreen needle leaf, evergreen 
broadleaf, deciduous needle leaf, deciduous broadleaf, and mixed forest); DEM_SD is the STD of 625 1-km 
DEM cells; Roughness denotes the surface roughness proxy used in this study; pi represents the proportion of 
pixels belonging to IGBP class i; and GSI denotes the landscape heterogeneity proxy. The categorized principles 
of Roughness and GSI are listed in Table 2. The main climate and snow classes, which are based on the Sturm 
snow-climate classification system and Koeppen-Geiger climate classification, are presented in the same table.

DEM_SD value (loge) Pixel type GSI value Pixel type Climate classes Snow classes

Log(DEMSD)∈[-3.367,1.042) Rou-I GSI∈[0,0.164] GSI-I Arid Tundra

Log(DEMSD)∈[1.042,2.832) Rou-II GSI∈[0.164,0.304] GSI-II Temperate Taiga

Log(DEMSD)∈[2.832,4.223) Rou-III GSI∈[0.304,0.444] GSI-III Cold Maritime

Log(DEMSD)∈[4.223,5.812) Rou-IV GSI∈[0.444,0.585] GSI-IV Polar Prairie

Log(DEMSD)∈[5.812,7.203] Rou-V GSI∈[0.585,0.878] GSI-V Alpine

Ephemeral

Note. The climate is divided into four classes based on the Koeppen-Geiger climate classification, and the seasonal snow 
cover of the Northern Hemisphere is categorized into six classes based on the Sturm snow-climate classification system.

Table 2 
The Surface Roughness and GSI Can Be Divided Into Five Groups (From I to V, With Increasing Intensity) (Ma 
et al., 2019)



Water Resources Research

QIAO ET AL.

10.1029/2021WR030895

8 of 23

4. Results
4.1. Spatial Analysis of SD Products at the Hemisphere Scale

Three daily average SD were calculated by using the data from 2012 to 2017 during the Northern Hemisphere 
winters (December-February). The spatial distributions of the daily mean winter SD values are illustrated in 
Figures 1a–1c), and Figure 1d shows the spatial pattern of the number of triplets used for calculation. It should 
be noted that the green patch in Figure 1d is due to the data missing of AMSR2 SD products. The spatial patterns 
of the mean SD from the CMC, AMSR2, and GLDAS display visible differences in the Northern Hemisphere. 
These disparities are mainly caused by different acquisition methods of the three SD products (see Section 2). 
The GLDAS exhibits much higher values than those of CMC and AMSR2 in high-latitude regions (above 40°N), 

Figure 1. Spatial distributions of averaged SD values during the winters from 2012 to 2017 for (a) CMC, (b) AMSR2, (c) GLDAS, and (d) the number of triplets used 
for calculation.
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while the CMC shows abnormally high values in parts of the Tibetan Plateau, indicating that the use of different 
approaches to generate the products may lead to inconsistent SD values in the Northern Hemisphere.

As shown in Figure 2, the three SD values show increasing trends as the latitude increases. However, there are 
still some differences among the three SD data sets at different latitudes. In the latitude of 30°–50°N, the CMC 
and GLDAS SD is mainly distributed below 10 cm, while some of the AMSR2 SD are distributed in 10–20 cm. 
In the latitude of 60° –70°N, most of the SD values are distributed in 20–40 cm for CMC, 10–20 cm for AMSR2, 
and 60–75 cm for GLDAS. Generally, they clearly reveal high SD values at latitudes above 40°N. Higher SD 
values are also found in the Tibetan Plateau, except for AMSR2. In high-latitude regions, the SD values of the 
three products exhibit higher SD values over western Siberia and north-eastern Canada. CMC SD shows much 
higher values over the Tibetan Plateau than do the AMSR2 and GLDAS SD products. AMSR2 exhibits greater 
SD values over north-eastern Siberia, while the GLDAS product presents significantly higher SD values over 
Siberia and North America.

4.2. Comparison of SD Products Using ETC Statistics

ETC analysis is employed to characterize uncertainties in the three SD data sets at the hemispheric scale without 
the true value. The comparison results using ETC are shown in Figure 3.

The CMC performs the best in capturing the evolution of SD (the median R  =  0.77), higher than GLDAS 
(R = 0.69) and AMSR2 (R = 0.48). It is interesting to note that both CMC and GLDAS share a similar distribution 
of R and perform reasonably well in latitudes above 40°N (e.g., Siberia, Europe, and North America), while the 
lower R values are distributed in Central Asia. The CMC adopts a great deal of ground observations distributed 
in Siberia, Europe, and North America (Brasnett, 1999), which results in the good performance of the CMC in 
these regions. In terms of the GLDAS 2.1, it considers the dynamic SD adjustments based on snow compaction 
over time, which is helpful to accurately capture the variability in the SD (Koren et al., 1999; Rodell et al., 2004). 
Compared to both CMC and GLDAS, the AMSR2 presents noticeably lower correlation values in the Northern 
Hemisphere. Passive microwave observations are easy to get saturated in deep snow conditions (i.e., brightness 
temperature no longer decreases as SD increases; Takala et al., 2009). In addition, the AMSR2 is not able to 
characterize the SD variability in complex mountainous regions (e.g., the Tibetan Plateau). The reason for the 
poor performance of passive SD algorithms is related to many factors (e.g., topography, forest cover, and wind 
speed; Smith & Bookhagen, 2016).

Figures 3d–3f show the spatial patterns of the STD values obtained from the ETC analysis. In general, the STD 
map is consistent with the results of the correlation coefficient. The larger STD values of the CMC are mainly 
found in complex mountainous regions (e.g., Tibetan Plateau and the Rocky Mountains), which may be due to 
limited ground observations in such regions (Liu et al., 2014). The AMSR2 exhibits larger STD values at latitudes 
above 40°N, and the GLDAS demonstrates larger STD values in northern Siberia, North America, and Pamir 
Mountains in central Asia.

Figure 2. The density scatterplot of the latitude and the SD data sets from (a) CMC, (b) AMSR2, and (c) GLDAS.
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4.3. Analysis of Environmental and Perturbing Factors

4.3.1. Impacts of Land Cover

Because different land cover types will affect snow cover redistribution and microwave radiation, it is crucial to 
investigate the performance of SD products under various land cover types (Tennant et al., 2017). The statistical 
indicators of the three SD products were calculated and illustrated in Figure 4 and Table 3 for different land cover 
types.

In terms of capturing the variation of SD, the CMC product outperforms the other two SD products under all 
studied land cover types, followed by GLDAS and AMSR2, shown in Figure 4a. The CMC exhibits relatively 
low R values in barren regions. One possible reason is that in situ measurements are limited in these regions. The 
climate in these regions is warmer, which leads to unstable snow cover. For the AMSR2 SD, the lower time-series 
correlations are mainly found in forests, shrublands, and savannas. The CMC is also superior to the other two 
products with regard to the STD. All three SD products exhibit the smallest STD values in barren regions. Over-
all, AMSR2 SD generally performs worse in vegetated regions than in non-vegetated regions (Cho et al., 2020; 
Lee et al., 2015; Wang et al., 2019). GLDAS has a larger STD in shrublands and savannas regions.

4.3.2. Impacts of Forest Cover Fraction

Aside from assessing the influences of various land cover types on the SD estimates, the response of SD perfor-
mance to different forest cover fractions was investigated, as shown in Figure 5. Table 4 summarizes the error 
metrics of the three SD products under different forest cover fractions. In forested areas, the vegetation affects not 
only the snowfall interception and retention of the surface but also the upwelling microwave radiation from the 
snowpack (Foster et al., 1991; Lundquist et al., 2013; Tong et al., 2010).

In terms of R values, the impacts of forest cover fraction on the three SD products are similar compared with 
the results of land cover. Generally, CMC and GLDAS have better performance in capturing the SD dynamics 

Figure 3. The spatial distribution of R and STD for CMC (left column), AMSR2 (middle column), and GLDAS (right column) during the winters from 2012 to 2017 
by using the ETC method. The percentage of R and STD in different intervals is presented in each subgraph.
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compared to AMSR2. The worsened capability of AMSR2 in capturing the SD trends in forest regions is consist-
ent with Lemmetyinen et  al.  (2009). The large fluctuations of correlation coefficient of AMSR2 SD may be 
caused by diverse forest types. The forest cover fractions used in this study include five IGBP forest types (the 
Evergreen Needleleaf Forest, Evergreen Broadleaf Forest, Deciduous Needleleaf Forest, Deciduous Broadleaf 
Forest, and Mixed Forest), which have different effects on microwave emission, snowfall interception, and reten-
tion (De Roo et al., 2007; Pomeroy et al., 1998). To capture the absolute value of the ground SD, the STD values 
of the three products present continuously increasing trends with increasing forest cover fraction, exhibiting a 
median STD ranging from 2.3/5.2/4.3 cm for CMC/AMSR2/GLDAS in sparsely forested areas (0 < ff < 15%) 
to 5.1/8.2/8.3 cm in densely forested areas (60% < ff < 100%). The results indicate that the forest cover fraction 
exerts little effect on the SD trend but significantly affects the absolute values of the SD products.

4.3.3. Impacts of Snow Classes

Because the snow properties exert important influences on the SD estimates, the performance of the three SD 
products with different snow classes was analyzed, and the results are shown in Figure 6 and Table 5. With 
regards to the skills of the three SD products under the various snow classes, the time series correlations of the 
three products given in Figure 6a suggest that the three SD products have different capacities to monitor varia-
tions of the ground SD. In general, the CMC and GLDAS have similar performance in terms of R under various 

Figure 4. Comparison of (a) R and (b) STD for the three SD products (CMC, AMSR2, and GLDAS) considering various land cover types, (c) denotes the MODIS 
IGBP land cover. In each box, the central mark indicates the median, the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively, and the 
whiskers extend to the most extreme data points.
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snow classes, and both are superior to the AMSR2 product. Under most snow 
classes, the CMC outperforms the other two products, with higher R and 
smaller STD values. The three SD products all display the best performance 
under ephemeral snow with the lowest STD values, which may be due to the 
thin snow cover with a relatively warm climate. The relative STD can be used 
as a supplement to the original STD to quantify the performance of different 
SD products under different ground conditions (with different SD ranges). 
However, since the true (reference) SD data at the hemispheric scale are not 
available, this metric cannot be obtained in the study. The three SD products 
also show low STD values under prairie snow conditions, with an average 
STD of 4.9/5.6/5.3 cm for CMC/AMSR2/GLDAS, respectively, which may 
be due to the sparse vegetation cover in such areas (Liu et al., 2014). Discrep-
ancies between the ground SD and estimated values from the CMC, AMSR2, 
and GLDAS products are large under tundra snow conditions, with larger 
average STD of 7.2, 8.5, and 13.4 cm, respectively.

4.3.4. Impacts of Surface Roughness

Surface roughness has important effects on physical snow properties and 
snow distribution (Gharaei-Manesh et  al.,  2016). Table  6 summarizes the 

error metrics of the three SD products under different surface roughness. Figure 7 displays the R and STD values 
of the three SD products under different surface roughness. The performance of the three SD products generally 
decreases with the increase in surface roughness. For CMC, larger R values are found over relatively smooth 
surfaces (0.78 for Rou II and 0.83 for Rou III, and the classification of surface roughness can be seen in Table 2). 
Similar to CMC, the performance of GLDAS also shows the highest median R in low roughness regions with R 
value of 0.78 in Rou I and 0.77 in Rou II. It is hard to satisfactorily capture the evolution of SD under high surface 
roughness conditions in all SD products. This difficulty may be because all approaches cannot characterize the 
dramatic spatial changes in complex mountainous regions (Li et al., 2012; Pulvirenti et al., 2011). Compared 

Land cover 
types Pixels

CMC AMSR2 GLDAS

R
STD 
(cm) R

STD 
(cm) R

STD 
(cm)

Forest 41,893 0.81 5.0 0.48 8.0 0.77 8.5

Shrublands 33,798 0.73 7.9 0.46 9.7 0.68 13.3

Savannas 15,304 0.77 8.0 0.47 8.7 0.74 10.9

Grasslands 29,784 0.75 4.4 0.54 6.5 0.68 6.9

Croplands 28,013 0.79 2.5 0.51 5.5 0.76 5.0

Barren 26,704 0.55 1.1 0.43 2.2 0.52 1.2

Note. The pixels in the table mean the total number of pixels used to 
determine the ETC-based R and STD. The best performance of each error 
metric is highlighted in bold.

Table 3 
Error Metrics (the Median R and STD) of the Three SD Products Based on 
the ETC Method Under Different Land Cover Types

Figure 5. Comparison of R and STD for (a, d) CMC, (b, e) AMSR2, and (c, f) GLDAS SD considering various forest cover fractions.
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with CMC and GLDAS, the AMSR2 SD products show lower time-series 
correlation values.

As shown in Figure 7 and Table 6, the AMSR2 and GLDAS products exhibit 
smaller STD values under low surface roughness conditions, with median 
STD values of 1.3 and 1.4 cm in Rou-I, respectively. Similarly, with increas-
ing roughness, the accuracy of CMC degrades, exhibiting a median STD 
ranging from 1.0 cm in Rou-I to 3.7 cm in Rou-V.

4.3.5. Impacts of Land Cover Heterogeneity

Various land cover types have different microwave radiation properties. The 
spatial resolution of current SD data sets is very coarse (e.g., 0.25°), and the 
landscape in one SD model grid or satellite pixel is hard to be regarded as 
homogeneous. Land cover heterogeneity may cause uncertainties in SD esti-
mates (Roy et al., 2014). As mentioned in Section 3, the GSI was adopted to 
characterize the heterogeneous effects of the land surface (Ma et al., 2019). 
The correlation coefficients and STD of the three SD products under differ-
ent land cover heterogeneity are shown in Figure 8 and Table 7.

In terms of R value under different land cover heterogeneity, the stable performance of the three products is illus-
trated in Figure 8. AMSR2 exhibits much lower correlation values than both CMC and GLDAS. It is also noted 
that CMC outperforms the other two products concerning STD, as shown in Figure 8. For the CMC SD product, 
it is visually seen that the STD values slightly increase with increasing land cover heterogeneity (Figure 8a). 
Neither AMSR2 nor GLDAS presents noticeable variation trends in terms of their STD values, which are similar 
to the correlation. Based on these results, the land cover heterogeneity exerts smaller effects on the accuracy of 
SD products than other factors.

4.3.6. Impacts of Climate Types

To investigate the skill of the three SD products under various climate regions, the R and STD values were calcu-
lated using the ETC method, as shown in Figure 9 and Table 8. Under most climate conditions, the CMC exhib-
its the best performance among the three SD products, with the highest R and smallest STD. Relatively better 
performance of the CMC, AMSR2, and GLDAS SD products is achieved under temperate climate conditions, 
with a median STD of 1.5, 1.9, and 1.7 cm, respectively. The next best performance is found in arid conditions, in 
which the CMC outperforms the AMSR2 product, with median STD values of 1.2. This result may be due to the 
shallow snow cover in the above two climate regions. AMSR2 is unable to detect shallow snow (<5 cm) and tends 
to underestimate in deep snow (>30 cm; Zhang et al., 2016). Nevertheless, the unstable capabilities of AMSR2 

and GLDAS in terms of tracking the variations in SD are observed under cold 
and polar conditions in Figure 9.

4.4. ETC Performance Rankings

As discussed in Section 4.3, the three data sets show different performance 
and error characteristics under different land surfaces and climate zones. 
Figure  10 shows the best performance of three SD products at the hemi-
spheric scale in terms of R and STD obtained from the ETC statistical 
results. The blue, red, and yellow parts represent the best results concerning 
R (Figure 10a) and STD (Figure 10b) for the CMC, AMSR2, and GLDAS, 
respectively. The results indicate the great complementary potential to 
integrate the three different products to form a more reliable hemispheric 
SD product with increasing R and decreasing STD values. As shown in 
Figure 10a, the CMC product is ranked first in most cases, accounting for 
50% of the pixels with viable ETC results. This result implies that CMC has 
relatively better performance in capturing the trends in most regions of the 
northeast hemisphere. Compared to CMC, GLDAS performs best in 40.2% of 
the available pixels, and it has a similar spatial pattern of the highest R-value, 

Forest 
fraction(%) Pixels

CMC AMSR2 GLDAS

R
STD 
(cm) R

STD 
(cm) R

STD 
(cm)

0–15 88,240 0.82 2.3 0.50 5.2 0.76 4.3

15–30 9,724 0.84 3.7 0.50 6.6 0.81 7.0

30–45 8,313 0.83 4.4 0.51 7.3 0.80 7.7

45–60 6,373 0.83 4.6 0.50 7.6 0.81 8.1

60–100 69,633 0.85 5.1 0.51 8.2 0.82 8.3

Note. The pixels in the table mean the total number of pixels used to 
determine the ETC-based R and STD. The best performance of each error 
metric is highlighted in bold.

Table 4 
Error Metrics (the Median R and STD) of the Three SD Products Based on 
the ETC Method Under Different Forest Cover Fractions

Snow classes Pixels

CMC AMSR2 GLDAS

R
STD 
(cm) R

STD 
(cm) R

STD 
(cm)

Tundra 32,398 0.74 7.2 0.49 8.5 0.72 13.4

Taiga 33,384 0.83 6.2 0.55 9.8 0.79 10.0

Maritime 10,307 0.81 6.5 0.45 5.7 0.80 9.1

Ephemeral 64,578 0.66 1.9 0.43 3.1 0.63 2.2

Prairie 25,880 0.74 4.9 0.50 5.6 0.71 5.3

Alpine 8,689 0.82 5.9 0.46 8.7 0.82 9.1

Note. The pixels in the table mean the total number of pixels used to 
determine the ETC-based R and STD. The best performance of each error 
metric is highlighted in bold.

Table 5 
Error Metrics (the Median R and STD) of the Three SD Products Based on 
the ETC Method Under Different Snow Classes
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except in the low latitudes (<40°N). The AMSR2 product has displayed the fewest pixels (only 9.8%) in terms of 
the highest ETC-based R value. Similarly, in Figure 10b, it is noticed that the CMC with the lowest STD values, 
accounts for 60% of the pixels with viable ETC results. The percentage of the other two SD products is relatively 
small (around 20%). This finding from the ETC results reveals the great potential to integrate the three different 
SD data sets to form a more reliable hemispheric SD product.

5. Discussion
To date, various SD products are available at large scales, including ground-based analysis data sets, passive 
microwave products, and LSMs data sets. Although they can be applied to various hydrometeorological applica-

tions, each product that derives from different methods has its own strengths 
and weaknesses. The significance of uncertainty analysis of SD products 
generally includes two aspects: one is that the evaluation results can facilitate 
the potential users to understand the status of the products and thus better use 
them for practical applications, and the other is that the results can be served 
as a feedback to the algorithm/model developers for further algorithm/model 
refinement.

In this study, the ETC-based results show that the CMC ground-based anal-
ysis product has better performance than AMSR2 and GLDAS. The main 
advantage of CMC is that it contains the snow data of the ground observation 
sites, resulting in its good performance in data-rich regions. Nevertheless, its 
accuracy is limited by the spatial distribution of the ground sites. The large 
uncertainties of CMC SD mainly occur in the complex mountainous regions. 
This is because the meteorological stations are mostly distributed in flat and 
low-altitude regions. Point-based observations are highly representative only 
if SD has smooth temporal and spatial variation (Che et al., 2016). Sparse 

Figure 6. Comparison of (a) R and (b) STD for the three SD products (CMC, AMSR2, and GLDAS) considering various snow classes, (c) represents the six snow 
classes based on the Sturm snow-climate classification system.

SurfaceRoughness Pixels

CMC AMSR2 GLDAS

R
STD 
(cm) R

STD 
(cm) R

STD 
(cm)

Rou-I 3,429 0.77 1.0 0.47 1.3 0.78 1.4

Rou-II 42,784 0.78 1.1 0.53 2.1 0.77 1.5

Rou-III 66,109 0.83 1.2 0.51 2.4 0.76 1.7

Rou-IV 59,695 0.73 1.5 0.48 2.7 0.70 1.9

Rou-V 9,411 0.71 3.7 0.47 3.1 0.63 4.4

Note. The pixels in the table mean the total number of pixels used to 
determine the ETC-based R and STD. The best performance of each error 
metric is highlighted in bold.

Table 6 
Error Metrics (the Median R and STD) of the Three SD Products Based on 
the ETC Method Under Different Surface Roughness
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ground measurements cannot capture the spatial and temporal features of SD under high surface roughness condi-
tions. In addition, the CMC has a larger STD in barren region. This may be because the surface of barren region 
is relatively flat (i.e., the surface roughness is small), and the landscape heterogeneity is small compared with 
other land cover types that leads to the smaller STD in this region. Issues with the CMC SD estimates in forest 
regions may be because most meteorological stations are distributed in open and flat regions. A variety of passive 
microwave SD products have been released based on different algorithms and sensors. The method of AMSR2 
SD product used in this study only considers the relationship between SD and passive microwave brightness 
temperature. Based on the findings of this study, the accuracy of AMSR2 SD is affected by many factors, which 
is consistent with previous studies (Cho et al., 2020; Dawson et al., 2018). The AMSR2 SD has larger uncer-
tainty in cold and polar climate conditions. The saturation of passive microwave signals over deep snow is also 

a limitation of AMSR2 SD product (Zhang et al., 2016). Moreover, different 
land cover types have different effects on the accuracy of AMSR2 SD. The 
forest coverage is one of the main factors that influence the performance of 
AMSR2 SD (Derksen et  al.,  2005). This is because forest inventory vari-
ables (e.g., canopy closure and stem volume) are more likely to attenuate 
microwave emission from snow surfaces and emit radiation itself, and the 
snow information contained in the brightness temperature received by the 
radiometers is reduced accordingly, which are hard to model accurately in 
an inversion scheme (De Roo et al., 2007; Yang et al., 2015). Although the 
AMSR2 SD algorithm introduces forest cover fraction, its influences cannot 
be completely removed. One possible reason is that the statistical relation-
ship between forest cover fraction and SD retrieval underestimation can be 
ambiguous at the satellite footprint (Derksen et al., 2005). In addition, surface 
roughness has a strong influence on the accuracy of the AMSR2 SD prod-
ucts. One possible reason is that surface elevation influences the atmospheric 
contribution to satellite measurements, and surface roughness adds its own 
contribution to the snow emission, resulting in reduced sensitivity of snow 

Figure 7. Comparison of R and STD for (a, d) CMC, (b, e) AMSR2, and (c, f) GLDAS SD products with regard to various surface roughness conditions.

GSIType Pixels

CMC AMSR2 GLDAS

R STD (cm) R STD (cm) R
STD 
(cm)

GSI-I 69,483 0.81 3.1 0.48 7.6 0.76 6.3

GSI-II 20,379 0.83 4.2 0.49 7.9 0.80 7.3

GSI-III 22,336 0.83 4.3 0.50 7.6 0.80 7.2

GSI-IV 33,870 0.82 4.3 0.49 7.6 0.81 7.2

GSI-V 35,578 0.85 4.9 0.52 7.7 0.83 7.8

Note. The pixels in the table mean the total number of pixels used to 
determine the ETC-based R and STD. The best performance of each error 
metric is highlighted in bold.

Table 7 
Error Metrics (the Median R and STD) of the Three SD Products Based on 
the ETC Method Under Different Land Cover Heterogeneity
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emissivity to SD (Savoie et al., 2009). The LSM takes into account the energy exchange process among snow, 
soil, and atmosphere, as well as the physical change process inside the snowpack. The accuracy of the SD derived 
from Noah LSM (GLDAS SD) largely depends on the quality of atmospheric forcing data, model structure, and 
the selected snow physical process model (e.g., the model structure of snow accumulation and ablation; Ansari 
et al., 2019; Broxton et al., 2016; Pomeroy et al., 1998). Different land cover would change the cumulative abla-
tion of snow and the energy exchange process between the surface and snow, which in turn has great impact on 
both accumulation and ablation processes. GLDAS does not take into account the impact of surface complexity 
on snow evolution and energy exchange processes, resulting in relatively large uncertainties of GLDAS. GLDAS 
has non-negligible uncertainty in densely forested areas, and this may be because the effect of forest cover is 
not well considered in GLDAS (Ek et al., 2003). In terms of the effects of snow classes, three SD products have 
the larger STD in tundra snow cover, and the reason may rise from a variety of reasons. First, the tundra snow 
cover is characterized by thin, cold, and wind snow, which was usually found above or north of tree line (Sturm 
et al., 1995). Additionally, the snow cover composition in this region is an ice crystal bottom layer with a compos-
ite wind-blown snow shell on it (Sturm et al., 1995). The complicated snow cover form may increase the difficulty 
of accurate inversion of models and remote sensing as well.

Additionally, the users should pay more attention to interpreting the absolute STD of the SD products in the 
study. Particularly in some cases, the low STD values of SD products may be due to the shallow snow in certain 
regions. Therefore, using absolute STD to present the uncertainty of SD products under different conditions (with 
different SD ranges) may be not intuitive sometimes. The normalized STD (i.e., absolute STD divided by mean 
SD) seems to be a better statistical metric. However, the calculation of normalized STD often needs a true (or a 
recognized reliable reference) SD value (e.g., the ground SD measurements). Selecting different mean SD values 
will lead to different results and implications. Here, we calculated two normalized STD divided by two different 
mean SD. One is divided by each mean SD estimates of CMC, AMSR2, and GLDAS, respectively, shown in 
Figure 11, and the other is divided by the mean SD estimates of the three SD products, displayed in Figure 12. It 
can be seen that there are some notable differences between the two results, especially in the magnitude and the 
location of the largest STD. Since the hemispheric-scale true value is not available (the ETC does not need true 
value for calculation), we kept the presentation of absolute STD values of the SD products in this study.

Figure 8. Comparison of R and STD for (a, d) CMC (b, e) AMSR2, and (c, f) GLDAS SD products with regard to different GSI groups.
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In summary, the SD products derived from ground-based analysis, passive 
microwave, and LSM have their own advantages and limitations. For instance, 
the CMC has the highest correlations and the lowest STD in most regions of 
the northeast hemisphere, but it still struggles to estimate SD over complex 
mountainous regions (e.g., the Tibetan Plateau). AMSR2 shows lower accu-
racy under vegetation-covered areas in terms of STD, while CMC shows 
better performance in these regions. Hence, according to the spatial distribu-
tion of uncertainty of the three SD products based on the ETC method (e.g., 
Figure 10), the three SD data sets can be fused to generate a higher quality 
and more complete SD product by using the merging approaches proposed 
in previous studies (Gruber et  al.,  2017; Yilmaz et  al.,  2012). Meanwhile, 
the results indicate that the three SD products have different performance 
under different variables (e.g., land cover, climate, surface roughness, etc.), 
which can provide a reference for the users to facilitate their applications and 
improve the SD products. Although this study systematically evaluated the 
performance of three different types of northern hemisphere SD products, 
these results focused on the winter period (December, January, and February) 
due to the difficulty in extracting SD information by microwave radiation 

Figure 9. Comparison of (a) R and (b) STD for the three SD products (CMC, AMSR2, and GLDAS) considering various climate classes, (c) represents the four climate 
classes based on the Koeppen-Geiger climate classification.

Climate 
classes Pixels

CMC AMSR2 GLDAS

R
STD 
(cm) R

STD 
(cm) R

STD 
(cm)

Arid 44,563 0.76 1.2 0.50 2.6 0.69 2.6

Temperate 22,928 0.79 1.5 0.45 1.9 0.76 1.7

Cold 79,194 0.85 5.3 0.51 9.0 0.83 9.1

Polar 17,802 0.72 6.5 0.44 6.2 0.72 10.5

Note. The pixels in the table mean the total number of pixels used to 
determine the ETC-based R and STD. The best performance of each error 
metric is highlighted in bold.

Table 8 
Error Metrics (the Median R and STD) of the Three SD Products Based on 
the ETC Method Under Different Climate Classes
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under wet snow conditions, which resulted in a lack of analysis for the melting periods. It also should be noted 
that though ETC method is an effective technique to calculate the STD and R metrics of various geophysical 
data sets, it cannot obtain the bias component which is also an important metric for SD products. Future efforts 
will focus on in-depth investigation of the physical reasons for different behaviors of the SD products at diverse 
ground conditions, to offer guidance for further improvement of the SD products.

6. Conclusions
Knowledge on the uncertainties of SD products is important for their improvement and utilization. This study 
gives the first attempt to systematically evaluate three different SD products (i.e., CMC, AMSR2, and GLDAS) 
on a hemispheric scale covering diverse ground conditions by using the ETC technique. The effects of various 

Figure 10. The SD products (CMC, AMSR2, and GLDAS) with the highest ETC-based (a) R and (b) STD values. The blue, red, and yellow parts indicate the best 
performance in terms of each error metric for CMC, AMSR2, and GLDAS, respectively. The white pixels indicate insignificant results (p value≥0.05).

Figure 11. The spatial patterns of the ETC-based STD divided by the mean SD from the corresponding SD data set: (a) CMC, (b) AMSR2, and (c) GLDAS.
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environmental and perturbing factors, including land cover, forest cover fraction, snow class, surface roughness, 
land cover heterogeneity, and climate, on the performance of the three SD products are comprehensively inves-
tigated and analyzed.

Generally, the CMC SD product performs the best among the three products, with a hemispheric-scale averaged R 
of 0.73 and STD of 4.8 cm. The accuracy of CMC still needs to be improved in regions with complex terrain (e.g., 
the Tibetan Plateau), where the ground measurements are very limited. All three products achieve higher abso-
lute accuracy in barren regions, exhibiting averaged STD values of 1.1/2.2/1.2 cm for CMC/AMSR2/GLDAS, 
respectively. It is also found that forest cover exerts significant impacts on SD products. In particular, an increase 
in the forest cover fraction causes the performance of CMC, AMSR2, and GLDAS worsen, with median STD 
ranging from 2.3/5.2/4.3 cm in sparsely forested areas to 5.1/8.2/8.3 cm in densely forested areas, respectively. 
The complementarity among the three SD products is further demonstrated by considering diverse snow class 
conditions. The three SD products exhibit the best performance in ephemeral snow regions, while the worst 
performance is mainly found in tundra, taiga, and maritime snow class regions. The performance of the three 
SD products is affected by the surface roughness. With increasing surface roughness, the accuracy of the three 
SD products worsens, exhibiting median STD ranging from 1.0/1.3/1.4 cm in Rou-I to 3.7/3.1/4.4 cm in Rou-V, 
respectively. This result reveals that the uncertainty of SD products is associated with topographical complexity. 
In contrast, in terms of land cover heterogeneity, the median STD value of CMC exhibits a slight increasing trend 
from 3.1 cm (GSI-I) to 4.9 cm (GSI-V), while AMSR2 and GLDAS do not show a significant variation trend 
in STD values. Considering a variety of climate types, the best performance for all three products is found over 
temperate climate regions.

Data Availability Statement
The authors also thank the researchers and their teams for providing the data used in this study. The CMC SD 
data set is available at https://nsidc.org/data/NSIDC-0447/versions/1. The JAXA SD data set can be obtained via 
ftp.gportal.jaxa.jp. The GLDAS-2.1 SD data set can be downloaded at https://disc.gsfc.nasa.gov/datasets. The 
MODIS IGBP land cover classification data sets are available at https://lpdaac.usgs.gov/products/mcd12c1v006/. 
The GLOBE DEM data are obtained at https://www.ngdc.noaa.gov/mgg/topo/globe.html. The other processed 
auxiliary data have been submitted to Dryad repository, but the data is currently in process (https://datadryad.org/
stash/share/nWhnV7k_EMHLqCz_EQXokkYMcYj_8vXw6TbfHJRZu2w), and the data are also available at the 
current link (https://drive.google.com/drive/folders/1ZXfD3Jy7XTfG7I43GNbhiUd2-yq38LIo?usp=sharing) 
for the purposes of peer review only.

Figure 12. The spatial patterns of the ETC-based STD divided by the mean SD of three SD data sets: (a) CMC, (b) AMSR2, and (c) GLDAS.
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