
The Seasonal Cycle of Surface Soil Moisture

MASON O. STAHLa AND KAIGHIN A. MCCOLLb,c

a Department of Geosciences, Union College, Schenectady, New York
b Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts
c School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

(Manuscript received 2 October 2021, in final form 15 March 2022)

ABSTRACT: The seasonal cycle contributes substantially to soil moisture temporal variability in many parts of the world,
with important implications for seasonal forecasting relevant to agriculture and the health of humans and ecosystems.
There is considerable spatial variability in the seasonal cycle of soil moisture, yet a lack of global observations has hindered
the development of parsimonious theories explaining that variability. Here, we use 6 years of global satellite observations
to describe and explain the seasonal cycle of surface soil moisture globally. An unsupervised clustering algorithm is used to
identify five distinct seasonal cycle regimes. Each seasonal cycle regime typically arises in both hemispheres, on multiple
continents, and across substantially different local climates. To explain this spatial variability, we then show that the ob-
served seasonal cycle regimes are reproduced very well by a simple but physically based water balance model, which only
uses precipitation and downwelling surface shortwave radiation as inputs, and includes no free parameters. Surprisingly, no
information on vegetation or land cover is required. To our knowledge, this is the first characterization of the seasonal
cycle of surface soil moisture based on global observations.

KEYWORDS: Atmosphere-land interaction; Hydrologic cycle; Hydrology; Soil moisture; Remote sensing; Seasonal cycle;
Clustering

1. Introduction

Over oceans, sea surface temperature is the most important
surface state variable controlling fluxes of water and energy from
the surface into the lower atmosphere. Over land, both surface
temperature and surface soil moisture (SSM) are critical. Variabil-
ity in both quantities is imprinted on near-surface weather and cli-
mate over land. The largest source of temporal variability in
surface temperature is the seasonal cycle (also referred to as the
“annual cycle”). Many previous studies have characterized the
seasonal cycle in surface or near-surface temperatures using sim-
ple energy balance models to explain spatial variability (e.g., Stine
et al. 2009; Dwyer et al. 2012; Stine and Huybers 2012).

Perhaps surprisingly, there has yet to be a comprehensive
analysis of spatial variability in the SSM seasonal cycle at
global scales. There are at least three plausible reasons for this.
First, observations of soil moisture have lacked the density and
coverage of near-surface temperature measurements, both
spatially and temporally. Second, in models, soil moisture is
primarily designed to be an index that reproduces accurate
surface fluxes of heat and moisture (Koster et al. 2009), result-
ing in substantial additive and multiplicative biases in modeled
soil moisture (e.g., Reichle et al. 2004). Such biases are much
less pronounced in modeled near-surface temperatures. Third,
for engineering purposes, interannual deviations from the sea-
sonal mean are arguably more important than the mean state
itself. For example, infrastructure can be designed to comfort-
ably withstand predictably dry summers and wet winters, but
cannot be redesigned to withstand an unpredictably wet or dry
year. Many studies focus on subseasonal variability by removing
the seasonal cycle, by 1) considering seasonal anomalies (e.g.,

Orth and Seneviratne 2012) or daily to weekly temporal fluctua-
tions (e.g., McColl et al. 2017a,b, 2019a; Feldman et al. 2018),
2) focusing on one season, usually the northern summer (e.g.,
Koster and Suarez 2001; Vargas Zeppetello et al. 2020a,b), or
3) comparing model outputs to those from control integrations
with soil moisture prescribed to follow a fixed, climatological
seasonal cycle (e.g., Koster et al. 2006; Berg et al. 2015). Subsea-
sonal variability is clearly important, but from the perspective
of basic climate science the seasonal cycle of SSM is arguably
just as important as the seasonal cycle of surface temperature.

Beyond its fundamental importance to the climate system,
the seasonal cycle of SSM directly constrains many other
important processes. In particular, seasonal SSM dynamics are
observed to be a critical controlling factor on seasonal flooding
across much of Africa (Tramblay et al. 2021), Australia
(Wasko et al. 2020), and Europe (Berghuijs et al. 2019); sea-
sonal nitric oxide emissions from soils in California (Homyak
and Sickman 2014); and vegetation patterns in the western
United States (Rickard 1967; Daubenmire 1968). Furthermore,
seasonal cycles in soil moisture have similarly been ob-
served to influence the mobilization of toxic metals from
soils and sediments (Van den Berg et al. 1998; Connolly
et al. 2022)}notably driving seasonal patterns in arsenic re-
lease in rice paddy soils (Roberts et al. 2011) and uptake into
rice plants (Li et al. 2009) as well as the overall arsenic mass
balance for these soils (Roberts et al. 2010).

In this study, we use global observations of SSM to describe
and explain its seasonal cycle. Our focus is on satellite obser-
vations rather than model simulations, given the uniquely
severe limitations of simulated soil moisture (e.g., Koster et al.
2009). Many studies document the seasonal cycle of soil water
storage at specific sites or regions (e.g., Hollinger and Isard
1994; Illston et al. 2004; Nandintsetseg and Shinoda 2011;Corresponding author: Mason Stahl, stahlm@union.edu
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Fernández-Long et al. 2021), or propose models of the sea-
sonal cycle of soil water storage (e.g., Milly 1994a,b; Laio et al.
2002; Katul et al. 2007; Feng et al. 2012, 2015), which are typi-
cally evaluated at a handful of specific sites or regions. While
these studies have yielded valuable insights, it is difficult to
generalize results from any one particular region due to soil
moisture’s complex dependence on site-specific land surface
properties. Our global analysis permits a broad overview and
the possibility of identifying a small number of generalizable
controls. Furthermore, it has been common to characterize
the seasonal cycle in terms of harmonics in previous studies of
other variables such as temperature (e.g., Stine and Huybers
2012; Stine et al. 2009) or precipitation (e.g., Kirkyla and
Hameed 1989). However, the seasonal cycle of soil moisture is
often poorly represented by one or two harmonics, and adding
higher-order harmonics clouds interpretation. Therefore, in this
study, we use alternative techniques that are parsimonious, like
previous analyses based on harmonics, but provide greater flexi-
bility in the functional form fit to the soil moisture observations.
To interpret the eight parameters fit per pixel, we use an unsu-
pervised clustering algorithm to partition the results into five re-
gimes. While the most common regime is one with no clear
seasonal cycle in SSM, many regions do exhibit a pronounced
seasonal cycle. To better understand the physical basis for each
regime, we train a random forest classifier on global observa-
tions of meteorological drivers of surface soil moisture, and find
that most of the observed variability can be explained by infor-
mation on precipitation and downwelling surface shortwave ra-
diation alone. Based on this insight, we derive a parsimonious
conceptual model of soil saturation based on established physi-
cal principles. The model only uses information on precipitation
and downwelling surface shortwave radiation as inputs, has
zero free parameters, and captures the first-order properties of
the SSM seasonal cycle in each regime remarkably well.

This manuscript is structured as follows. In section 2, we
characterize seasonal SSM dynamics based on global observa-
tions and use unsupervised machine learning to identify areas
with similar SSM dynamics. We then empirically identify the
most important climate drivers that are responsible for the
emergence of the different SSM seasonal cycle regimes. We
compare how these drivers differ between SSM regimes and
across the same regimes that emerge in different regions of
the globe. To explain the results, the conceptual model is intro-
duced in section 3. We discuss the environmental significance of
our findings in section 4 and the study’s limitations in section 5.
Section 6 summarizes the study’s main conclusions, and specu-
lates on potentially interesting lines of future research.

2. Data analysis

a. Soil moisture and climatic data acquisition

We use daily 36-km spatial resolution NASA Soil Mois-
ture Active Passive (SMAP) soil moisture data (SPL3SMP
version 7) from 31 March 2015 to 28 April 2021 in our anal-
ysis (Entekhabi et al. 2010). Pixels with retrieval quality flags
of 0, 1, 8, or 9 were retained for analysis. This includes pixels
with dense vegetation, which are likely subject to larger

retrieval errors, although perhaps to a lesser extent than pre-
viously thought (Colliander et al. 2020). We chose to retain
these pixels in the main analysis to maximize spatial coverage,
but repeated the entire analysis using only pixels with the
highest quality retrievals (i.e., retrieval_qual_flag 5 0 or 8).
Our results were qualitatively the same, though the spatial
coverage was more limited (appendix B). Since SMAP has
been extensively validated in previous studies (Chan et al.
2016; Colliander et al. 2017; Chen et al. 2018), we do not fur-
ther validate the soil moisture retrievals here.

SMAP nominally measures soil moisture in the top 5-cm
soil layer, rather than deeper layers [∼1 m, often referred to
as “root zone” soil moisture (RZSM)] that may be more
relevant to plants. Hence, our study focuses on SSM rather
than RZSM. However, SSM is typically well correlated with
RZSM in many regions (Ford et al. 2014; Akbar et al. 2018;
Short Gianotti et al. 2019), meaning it can be regarded as a
proxy of RZSM under many conditions. We also distinguish
between soil moisture [u, the ratio of the volume of water
to the unit volume of soil (m3 m23)], and soil saturation
[s5 (u 2 uw)= ufc 2 uw( ) (%), where uw (m3 m23) is the
wilting point soil moisture, an approximate lower bound,
and ufc (m

3 m23) is the field capacity, an approximate upper
bound for soil water storage . To convert between the two
quantities, we use gridded estimates of ufc and uw obtained
from the HiHydroSoil (v2.0) database (Simons et al. 2020).

Globally gridded monthly normals (1981–2010) for air tem-
perature, precipitation, and downwelling surface shortwave
radiation, and potential evapotranspiration (PET) were ob-
tained from the TerraClimate dataset, which has a spatial reso-
lution of 4 km (Abatzoglou et al. 2018). TerraClimate PET is
only used in a supplementary analysis provided in appendix A
and appendix B. Seasonality metrics for the overall level of
seasonality and period of seasonal concentration for both pre-
cipitation and downwelling surface shortwave radiation were
computed using the method of Markham (1970). In this ap-
proach, mean monthly values are treated as vector quantities,
where the magnitude is the monthly mean value (i.e., monthly
mean precipitation or downwelling surface shortwave radia-
tion) and the direction is the month of the year expressed as an
angle (e.g., January 5 158, February 5 458, …). Adding the
monthly vectors for a climate variable (e.g., precipitation) pro-
vides a measure of the variable’s seasonality, with the resultant
vector’s magnitude representing the level of seasonality and its
direction representing the period of seasonal concentration.
Two indices are used to summarize this information:

SI 5
V2

x 1 V2
y

( )1=2
Vtot

and

SC 5 tan21 Vy

Vx

( )
180
p

1

180, when Vx # 0

0, when Vx . 0 and Vy . 0

360, when Vx . 0 and Vy # 0

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
where Vi is the monthly value of precipitation or downwelling
surface shortwave radiation for month i, ui is the angle for

J OURNAL OF CL IMATE VOLUME 354998

Brought to you by Harvard Library Information and Technical Services | Unauthenticated | Downloaded 07/25/22 03:14 PM UTC



month i, Vx 5
∑12

i51Vi cos ui( ) is the x direction component of
the sum of the monthly vector, Vy 5

∑12
i51Vi sin ui( ) is the y

direction component of the sum of the monthly vectors, and
Vtot 5

∑12
i51Vi. SI is the seasonality index, which indicates

the level of seasonality: SI 5 0 indicates that values are uni-
formly distributed throughout the year, whereas SI 5 1 indi-
cates that values are concentrated within a single month. SC
is the seasonal concentration, which is the resulting angular
direction (in units of degrees) of the annual vector, and this
direction indicates the month in which monthly values are
most concentrated.

For the random forest modeling (section 2c) and the concep-
tual soil moisture modeling (section 3) some data aggregation
was required to ensure consistent spatial and temporal resolu-
tion across the underlying dataset. Both required the gridded
TerraClimate data at the same spatial resolution as the SMAP
data. Thus the 4-km-spatial-resolution TerraClimate data were
aggregated by taking the mean of pixels within each 36-km
grid cell of the SMAP grid. Raster data processing was done
in the R programming language (R Core Team 2020) using
the Raster package (Hijmans 2020). The conceptual soil
moisture model generates monthly soil moisture values
from the input of monthly climate normals. Thus when
comparing the output from the conceptual model to the
SMAP observations, which are subweekly (see section 3),
we computed mean monthly soil moisture values from the
SMAP data.

b. Seasonal soil moisture regime classification

The daily SMAP data were used to compute weekly composite
soil moisture values for each pixel. For a given week and pixel,
this involved taking all of the daily values for that week (e.g.,
week 1 5 1–7 January, week 2 5 8–15 January, …), across all
years of record (2015–21) and computing the weekly mean of the
soil moisture measurements. Thus pixels with a complete soil
moisture record have 52 weekly composite values. For pixels
where gaps in the weekly composite record existed due to fro-
zen soils, we gap filled the weekly composite data to generate
a complete record if the following conditions were met: 1) the
pixel had at least 10 complete weeks of data and 2) only a sin-
gle contiguous gap existed in the weekly composite record.
Gap filling was done by linear interpolation. After gap filling,
pixels with a complete weekly composite record (i.e., 52 weeks)
were classified according to their seasonal surface soil mois-
ture dynamics. The results of our analyses are qualitatively in-
sensitive to gap filling (appendix B), except that the spatial
coverage in regions with colder winters is much greater when
gap filling is performed.

The primary focus of this study is on the seasonal dynamics
of soil moisture, rather than its mean state. Therefore, to al-
low for better comparison between pixels that have different
mean soil moisture values, we first subtracted each pixel’s
mean annual soil moisture value from its weekly composite
values. In addition, the weekly composite record for pixels in
the Southern Hemisphere were phase-shifted by 26 weeks to
align seasons between the Northern and Southern Hemi-
spheres and thus allow for a more intuitive comparison across
hemispheres.

Once the data were rescaled we projected the discrete (i.e.,
weekly) observations to continuous functions using functional
data analysis (FDA) (Wang et al. 2016), following the approach
of Brunner et al. (2020), who successfully used FDA to charac-
terize the seasonal dynamics of streamflow across the United
States. We did this by fitting eight B-spline basis functions of or-
der 4 to each pixel’s rescaled weekly composite data. This re-
sulted in eight coefficients per representative soil moisture pixel.

We then used cluster analysis to summarize this informa-
tion globally. The pixels were clustered using the k-means
algorithm (Hartigan and Wong 1979) on the computed
spline coefficients. This unsupervised learning approach al-
lowed for the identification of soil moisture regimes based

TABLE 1. Random forest soil moisture regime model
prediction errors. Variables were added to the model in order of
their predictive power (Fig. 3). Thus, the single-variable model
uses only the most predictive variable. The two-variable model
uses the top two predictors, the three-variable model the top
three, and so on. Descriptions of the climate variables and the
calculation of seasonal concentration (SC) and seasonality index
(SI) are described in section 2a. The model with all seven
predictors is referred to as the “full model” in the text, figures,
and tables.

Variables used in model
Model prediction

error (%)

Annual precipitation 15.55%
Downwelling surface shortwave radiation SC
Precipitation SI
Downwelling surface shortwave radiation SI
Downwelling surface shortwave radiation mean
Mean annual air temperature
Precipitation SC

Annual precipitation 16.26%
Downwelling surface shortwave radiation SC
Precipitation SI
Downwelling surface shortwave radiation SI
Downwelling surface shortwave radiation mean
Mean annual air temperature

Annual precipitation 17.80%
Downwelling surface shortwave radiation SC
Precipitation SI
Downwelling surface shortwave radiation SI
Downwelling surface shortwave radiation mean

Annual precipitation 20.94%
Downwelling surface shortwave radiation SC
Precipitation SI
Downwelling surface shortwave radiation SI

Annual precipitation 28.19%
Downwelling surface shortwave radiation SC
Precipitation SI

Annual precipitation 41.28%
Downwelling surface shortwave radiation SC

Annual precipitation 61.94%
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on the underlying data. The number of clusters to use in the
analysis is a somewhat subjective choice. To illustrate the
tradeoffs in making this choice, consider two extreme cases
for a cluster analysis of seasonal cycles for N pixels. At one
extreme, choosing to use only one cluster would result in
each pixel being assigned to the same cluster. This certainly
reduces the dimension of the data, but the resulting cluster
would not be particularly meaningful: many of the seasonal
cycles assigned to the cluster would deviate substantially
from the cluster’s mean seasonal cycle. At the other ex-
treme, choosing to use N clusters would result in each pixel
being assigned to its own distinct cluster. In this case, each
seasonal cycle assigned to a given cluster would perfectly
match the cluster’s mean seasonal cycle. However, the clus-
ter analysis would be useless, since it does not reduce the
dimension of the data. In general, the major trade-off in

choosing the number of clusters to use is between accuracy
(the degree to which each seasonal cycle assigned to a cluster
matches the cluster’s mean seasonal cycle) and simplicity (the
fewer clusters, the better). The marginal benefit of adding one
more cluster often diminishes beyond a certain threshold. This
intuition is formalized by the “elbow method” (Boehmke and
Greenwell 2019) for choosing the number of clusters. We
adopted that approach here. This resulted in five clusters
(which we refer to as “regimes” for the rest of the study).
Every pixel that met the filtering requirements detailed above
was assigned to exactly one regime.

c. Identification of climatic determinants of soil
moisture regimes

To identify the climatic drivers that are likely controlling
the emergence of the soil moisture regimes identified through

FIG. 1. (top) SSM seasonal cycle by regime, with the seasonal cycle for each individual pixel shown as gray lines and the representative
LOESS smoothed seasonal cycle shown as colored lines. The upper row of month values on the horizontal axis applies to the Northern
Hemisphere and the lower row applies to the Southern Hemisphere (data in the Southern Hemisphere were phase-shifted by 6 months;
see section 2b). (bottom) Spatial distribution of SSM seasonal cycle regimes. White pixels represent missing data. Horizontal dashed lines
represent the bounds of the tropics. Inset: percentage of total land area (excluding land with missing values) per regime.
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k-means clustering, we developed a predictive model to deter-
mine the soil moisture regime based solely on climate data.
This involved training a random forest model on the soil
moisture regimes determined by k-means clustering and using
the air temperature, precipitation, and downwelling surface
shortwave radiation data as predictor variables (Table 1).
Briefly, a random forest model is a machine learning algo-
rithm that can be used for classification and regression (James
et al. 2021) and these models have become widely used in the
geosciences (Bergen et al. 2019). For classification tasks random
forests operate by constructing an ensemble of decision trees
based on the model training data}observations with a known
class (target) and known attributes (predictor variables)}and
the trained model can then be used to predict the class of further
observations based on their attributes (predictor variables)
(James et al. 2021). Furthermore, random forest models allow for
the straightforward interpretation of which predictor variables
are most important in the classification task the model was
trained for (Boehmke and Greenwell 2019; Bergen et al. 2019).
Since the primary goal of the random forest model was to gain a
clearer understanding of the controls on the seasonal cycle of
SSM, we used as predictor variables seasonality metrics (SI and
SC, described in section 2a) and annual totals as opposed to the
full monthly time series for precipitation and downwelling surface
shortwave radiation. This approach reduces the dimensionality of
a monthly time series from 12 to 3 dimensions (SI, SC, and an-
nual total) and thus improves the interpretability of vari-
able importance. A 50–50 training–test split was used in
the development of the model (i.e., 50% of the pixels were
randomly selected and used to train the model and the
remaining 50% were used to test the model). Model perfor-
mance was evaluated using the results from the out-of-bag
(OOB) sample. The relative importance of predictors was in-
terpreted using the permutation importance. The permutation
importance is determined by randomly permuting the value of
a single predictor variable, while keeping all other predictor
variables unchanged, and comparing the predictions for the
permuted case to the predictions for the unpermuted case
(Strobl et al. 2007). The importance of a given predictor is as-
sessed by how much the model accuracy decreases as a result
of permuting that variable. Thus, the greater the importance of
a given predictor, the greater the decrease in model accuracy
as a result of permuting that variable.

d. Seasonal soil moisture dynamics and their controls

Observed surface soil moisture is clustered into five distinct
seasonal cycle regimes (Fig. 1):

• Regime 1: Muted minimum from May to October in the
Northern Hemisphere and from November to April in the
Southern Hemisphere. This regime is found in the Middle
East, central Asia, western and northern Europe, much of
the eastern United States, and along the U.S. West Coast
in the Northern Hemisphere. In the Southern Hemisphere
it is found in some areas of central and southeastern South
America and southern Australia.

• Regime 2: Pronounced long-duration peak from May to
September in the Northern Hemisphere and from November
to March in the Southern Hemisphere. In the Northern
Hemisphere it is observed in an east–west belt between the
Sahel and the Congo rainforest as well as across much of
Southeast Asia. In the Southern Hemisphere this regime is
observed in southern central Africa, northern Madagascar,
and small pockets in Brazil.

FIG. 2. (a) Random forest model (full model; see Table 1)-predicted regimes. (b) Model-predicted error map. Blue
pixels are correct predictions and red pixels are incorrect predictions. White pixels represent missing data.

FIG. 3. Random forest model variable importance. The variable
importance is computed by the permutation accuracy importance
method (see section 2c for details).
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• Regime 3: Muted long-duration peak from May to October
in the Northern Hemisphere and from November to April
in the Southern Hemisphere. It is commonly found in the
tropics of Africa, and large areas of eastern Brazil and cen-
tral Argentina. It is also found in parts of Central America
and the central United States, as well as southern India and
central China.

• Regime 4: Pronounced short-duration peak from July to
September in the Northern Hemisphere and from January to
March in the Southern Hemisphere. This regime is found in
an east–west band across the northern Sahel, much of India,
the central Tibetan Plateau, northern Mongolia, northeast
China, and in western Mexico. In the Southern Hemisphere
it is found in scattered pockets throughout South America,
southeast Africa, and northern Australia.

• Regime 5: No seasonal cycle, found widely throughout the
Southern and Northern Hemispheres. This regime is mainly
found in either arid regions (including the Sahara, Austra-
lian desert, southern Africa, and the south-central United
States) or tropical rain forests (including the Amazon and
Congo).

The emergence of a given soil moisture regime is largely ex-
plained by the seasonal cycles of precipitation and downwel-
ling surface shortwave radiation. A random forest model
using precipitation [annual total, seasonal timing (SC), and
level of seasonality (SI)] and downwelling surface shortwave
radiation [annual total, seasonal timing (SC), and level of sea-
sonality (SI)] and air temperature (mean annual) data as pre-
dictors accurately predicts the soil moisture regimes that were
determined by k-means clustering (Fig. 2; Table 1; see also

Tables A1 and A2). The most important explanatory varia-
bles in the random forest model were 1) total annual precipi-
tation, 2) timing of peak seasonal downwelling surface
shortwave radiation, 3) level of seasonality of precipitation,
and 4) level of seasonality of downwelling surface shortwave
radiation (Fig. 3). The explanatory power of the top four most
important predictors (annual precipitation, downwelling sur-
face shortwave radiation SC, precipitation SI, and downwel-
ling surface shortwave radiation SI) is highlighted by 1) the
relatively strong performance (prediction error 5 20.9%) of
the random forest model using only these four variables and
2) the dramatic improvement in model performance between
the single-variable random forest model and the four-variable
random forest model (Table 1). Further, although more mod-
est, gains in model performance occur as additional predictor
variables are added to the random forest model, with the
full model having a prediction error of 15.5% (Table 1).
Notably, regions without a seasonal cycle in surface soil
moisture (regime 5) were largely identifiable due to low
precipitation alone, while regions with a seasonal cycle in
soil moisture are distinguished based on the magnitudes
and seasonal cycles of precipitation and downwelling sur-
face shortwave radiation.

3. Conceptual model

Why is the SSM seasonal cycle mainly determined by pre-
cipitation and downwelling surface shortwave radiation? To
answer that question, we introduce a simple, physically based
model of SSM, which only uses precipitation and downwelling
surface shortwave radiation as inputs. Several models of the

FIG. 4. (a) Conceptual model of soil saturation s(t), given in Eq. (2): P(t) is precipitation at time t, E(t) is evapotranspiration, R(t) is run-
off, D(t) is drainage, and Dz is the thickness of the soil layer. (b) Example model output for a case in which P(t) and PET(t) are in phase,
and the PET(t) amplitude is varied. The modeled s(t) (solid and dashed purple lines) does not exhibit a seasonal cycle, even when the
amplitude of PET is greater than (red solid line) or less than (red dashed line) the amplitude of P (blue solid line). (c) Example model out-
put for a case in which P(t) and PET(t) have the same amplitude, and the PET(t) phase is varied.
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seasonal dynamics of SSM have been proposed in previous
studies (e.g., Milly 1994a; Laio et al. 2002; Feng et al. 2012,
2015). As the integral of the sum of surface water fluxes con-
strained by soil and vegetation, soil moisture exhibits substan-
tial spatial variability; as a result, these models typically
require multiple parameters. For example, the model results
shown by Laio et al. (2002) in their Fig. 3 require the specifi-
cation of seven parameters related to soil hydraulic pro-
perties, in addition to information on forcings (potential
evapotranspiration and precipitation). While earlier studies
have provided considerable insight, we will show that a sub-
stantially simpler model is sufficient to represent the main
features of the SSM seasonal cycle regimes identified in
previous sections.

The water balance of a vertically averaged, horizon-
tally homogeneous control volume of soil extending from
the land surface down to a depth Dz (m) (Fig. 4a) can be
modeled as

Dz(u fc 2 uw) dsdt 5 P(t) 2 E(s, t) 2 Q(s, t)
≈ P(t) 2 PET(t)s(t) 2 P(t)s(t), (1)

where t is time (s), P is precipitation at the land surface
(m s21), E is evapotranspiration from the land surface (ms21),
and Q is the sum of drainage (vertical transport to deeper
soil layers) and runoff (horizontal transport) (m s21). We
treat Q as equal to the product of precipitation and soil sat-
uration, so that higher-intensity precipitation will increase
Q, all else being equal, resulting in greater partitioning of
precipitation to surface runoff and infiltration. We treat E
as equal to the product of soil saturation and potential
evapotranspiration (PET; m s21). PET is used as a forcing
in this study rather than E because PET is not causally
influenced by soil moisture, whereas E is itself strongly de-
termined by soil moisture in water-limited environments.
PET is, therefore, the more fundamental external forcing.

FIG. 5. Precipitation and PET [where PET 5 0:8Rsd(t)= rk( )] seasonal cycle and soil moisture seasonal cycle by region (rows) for each
soil moisture seasonality regime (columns). Precipitation (blue lines) and PET (red lines) are shown for (second row) the extratropics and
(fourth row) the tropics. Precipitation and downwelling surface shortwave radiation (Rsd) data are from TerraClimate gridded monthly
normals (1981–2010) (Abatzoglou et al. 2018). Observed (SMAP) soil moisture anomalies (black lines) and modeled soil moisture anoma-
lies (green lines) by regime (columns) are shown for (first row) the extratropics and (third row) the tropics. Modeled soil saturation from
Eq. (2) was converted to soil moisture using gridded estimates of soil field capacity and wilting point obtained from the HiHydroSoil
(v2.0) database (Simons et al. 2020). In all panels, solid lines represent the LOESS-smoothed monthly values for all pixels in a given re-
gime and hemisphere and dashed lines represent the 25th- and 75th-percentile values. The upper row of month values on the horizontal
axis applies to the Northern Hemisphere and the lower row applies to the Southern Hemisphere (data in the Southern Hemisphere were
phase-shifted by six months; see section 2b). The percentages in the top-left corner of the panels represent the proportion of classified
land area that falls into a given soil moisture regime and region.
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Nonlinear variants of this simple model have been used in
previous studies (e.g., Koster and Mahanama 2012). Our
linear model does not necessarily sacrifice much model ac-
curacy: for example, see Figs. 6d, 7d, and 8d of Koster
and Mahanama (2012), which show that a linear variant of
their nonlinear model performs reasonably well in repro-
ducing results from a much more complex model. Our
model prioritizes 1) maximum simplicity and 2) aspects
relevant to the seasonal cycle (approximately monthly
time scales).

Recent work (Koster and Mahanama 2012; Milly and
Dunne 2016; Maes et al. 2019) has shown that PET can be
estimated very well using the simple relation PET ∝ (Rn=rk),
where Rn is net surface radiation (W m22), r is the density
of water (kg m23), and k is the latent heat of vaporization
(J kg21). This relation, which is substantially simpler than
alternatives, has also been shown to be more accurate when
validated against ground observations (Maes et al. 2019).
Since the seasonal cycle of net surface radiation is largely
determined by the seasonal cycle of downwelling surface
shortwave radiation (Rsd; W m22), we further simplify this
relation to PET ∝ (Rsd=rk). We use the same constant of pro-
portionality (0.8) as that used in Milly and Dunne (2016). The
model is not calibrated.

Taking the limit as Dz → 0 (a relevant approximation for
surface soil moisture), and rearranging gives

s(t) 5 P(t)
PET(t) 1 P(t) 5

rkP(t)
0:8Rsd(t) 1 rkP(t) : (2)

To our knowledge, this model of surface soil saturation is
new. Since Koster and Mahanama (2012) do not focus on the
seasonal cycle, the most similar previous work is, arguably,
Laio et al. (2002), which is itself similar to, for example, Milly
(1994a,b) and Feng et al. (2015). More specifically, our model
is nearly equivalent to a special case of Eqs. (14) and (15) of
Laio et al. (2002): in their notation, the case in which the
active soil layer depth Zr 5 0 (since the focus of our study is
on surface soil moisture), the wilting point soil saturation
sw 5 0, and the critical soil saturation s* 5 1. In this case, the
loss function (the sum of E and Q, in our notation) is a linear
function of soil saturation, and so the higher-order corrections
discussed at length in Laio et al. (2002) are not required.
While the assumption of a linear loss function is strong, it is
better justified at larger spatial scales relevant to satellite soil
moisture retrievals, rather than the point scales of interest to
Laio et al. (2002). As we will show, it is also empirically
successful, at least in reproducing the first-order behavior of
the SSM seasonal cycle. The main difference between our
model and that of Laio et al. (2002) is the choice of estimate
for PET. They use a variant of the Thornthwaite equation
(Thornthwaite 1948), which uses air temperature as an input,
whereas our study uses a variant of the model proposed by

FIG. 6. As in Fig. 5, but restricting the analysis to regions with the highest-quality SMAP retrievals (see appendix B for further
details).
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Milly and Dunne (2016) with Rsd used as the only input. While
temperature-based estimates of PET have been widely used,
they are empirically less accurate than radiation-based esti-
mates (Maes et al. 2019), and also less physically justified. Our
own random forest model analysis, presented in the previous
section, demonstrates that Rsd explains substantially more spa-
tial variability in the SSM seasonal cycle than air temperature,
further justifying our approach.

Our model is a transformation of the well-known aridity in-
dex (often written as AI 5 PET/P), a common proxy of land
surface “dryness.” The AI reproduces spatial and intra-annual
temporal variability in surface soil moisture reasonably well
(although not interannual and multidecadal variability; see,
e.g., Greve et al. 2019; Berg and McColl 2021; Scheff et al.
2021). In contrast to the AI, our expression is derived from
basic physical principles, and scales between 0 and 1. In addi-
tion, the Budyko curve relates E/P to AI by a single curve, at
least for annual mean values (Budyko 1958, 1974). Our model
predicts E/P 5 (1 1 AI21)21, which is identical to the func-
tional form of the Budyko curve proposed in several earlier
studies for the special case in which n 5 1 (Choudhury 1999;
Yang et al. 2008).

The simple model shows that the seasonal cycle of SSM
is controlled, to first order, by the seasonal cycles of both
precipitation and PET (which is reasonably approxi-
mated as proportional to Rsd). For the case in which pre-
cipitation dominates}P(t).. PET(t)5 0:8Rsd(t)

[ ]
=rk}our

simple model predicts s(t) ≈ 1 (i.e., soils are saturated
and soil moisture is at field capacity). For the case in
which Rsd dominates}P(t),, PET(t)5 0:8Rsd(t)

[ ]
=rk}our

model predicts s(t) ≈ 0 (i.e., soils are dry and soil moisture is at
wilting point). Even for this highly simplified model, the
predicted seasonal cycle of SSM is nontrivial. For example, if
precipitation and PET both have seasonal cycles with large
(constant) amplitudes, but their seasonal cycles are in phase

with one another, then this simple model would predict no sea-
sonal cycle in SSM (Fig. 4b). If the seasonal cycles of precipita-
tion and PET are not in phase with one another, then the
seasonal cycle of SSM can be qualitatively different from that
of either P or PET (Fig. 4c). While the model presented here
is intentionally highly idealized, adding greater complexity
would only make the seasonal cycle of SSMmore complex.

Despite its simplicity, the conceptual model is broadly suc-
cessful in reproducing the SSM seasonal cycle regimes (Fig. 5).
The conceptual model’s performance is poorest for regime 1
in the tropics (comprising 1.7% of the classified area) and
for regimes 2 and 3 in the extratropics (comprising 2.3%
and 6.4% of the classified area, respectively). However,
when considering only pixels with the highest-quality SSM
retrievals (i.e., excluding regions with dense forests or with
periodically frozen soil, as is common; see appendix B), the
conceptual model performance improves considerably in
these regions (Fig. 6). Using a substantially more complex
model of PET within the conceptual model only decreases
its accuracy (Fig. A1). Plausible alternatives of comparable
complexity to our model turn out to be insufficient. For
example, the alternative model s(t) ∝ P(t) 2 PET(t) [a com-
mon proxy of surface “dryness” used in, e.g., Slessarev et al.
(2016)] fails to adequately reproduce regime 5 in the extra-
tropics, which covers the largest area of any regime in the
classification (Fig. A2). The alternative model s(t) ∝ P(t)
similarly fails to identify regime 1 in the extratropics, which
covers the second largest area in the extratropics of any
regime in the classification (Fig. A3). In addition, both mod-
els lack a clear derivation based on the land surface water
budget, neither model constrains s(t) to lie between zero
and one, and they both require a constant of proportionality
parameter to convert to the right units.

We now use the conceptual model to interpret and explain
the observed SSM seasonal cycles. Each of the observed SSM
seasonal cycle regimes are present in both the Northern and
Southern Hemispheres. For each regime, the hemisphere-
averaged seasonal cycles of P and PET for each regime do
not vary considerably between the Northern and Southern
Hemispheres (not shown), indicating that the basic mechanisms
linking P, PET, and SSM are similar in both hemispheres after
phase-shifting the Southern Hemisphere by 6 months.

In the tropics, there is little seasonal variability in Rsd (and,
therefore, PET), so the seasonal cycle of P dominates the sea-
sonal cycle of SSM. Regimes 2, 3, and 4 all have a larger pres-
ence in the tropics than the extratropics, and all include a clear
seasonal cycle in P, with P sometimes exceeding PET (Fig. 5).
This results in a pronounced SSM seasonal cycle for these

TABLE A1. Observed and random forest (full model) predicted
regimes for all pixels. Values in the table indicate the number of
pixels in each category.

Observed regime

Predicted regime 1 2 3 4 5

1 4844 12 54 15 800
2 5 2484 360 253 136
3 60 287 4516 126 1008
4 7 244 109 4664 803
5 669 90 716 535 17 644

TABLE A2. Random forest (full model) model performance statistics by regime. The statistics reported in the table are defined
below.

Regime 1 Regime 2 Regime 3 Regime 4 Regime 5

Sensitivity 0.85 0.77 0.75 0.80 0.90
Specificity 0.98 0.98 0.96 0.97 0.87
Positive prediction value (PPV) 0.87 0.80 0.78 0.83 0.87
Negative prediction value (NPV) 0.97 0.98 0.96 0.97 0.90
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regimes in the tropics that follows the seasonal cycle of P. The
most common regime in the tropics (regime 5) has a more muted
seasonal cycle in P, and P does not exceed PET, on average, in
this regime at any point in the year. This results in low seasonal
variability in SSM in regime 5 in the tropics.

In contrast, outside the tropics, the strong seasonal cycle in
Rsd (and, therefore, PET) dominates the seasonal cycle of
SSM. Regimes 1 and 5 are both mainly observed outside the
tropics, and both feature a relatively flat seasonal cycle in
P and pronounced seasonal cycles in PET. However, regime
1 exhibits a strong seasonal cycle in SSM whereas regime
5 does not. Why? According to the conceptual model [Eq. (2)],
variability in s(t) will be small if either PET(t).. P(t) [in which
case, s(t) ≈ 0] or P(t) .. PET(t) [in which case s(t) ≈ 1]. PET is
substantially larger than P throughout the year in regime 5,
whereas PET and P have comparable magnitude in the winter
in regime 1, explaining the difference between the two regimes.

4. Environmental significance

A surprising result of this study is that much of the temporal
variability of surface soil saturation at seasonal time scales
can be explained without reference to information on vegeta-
tion or land cover type (Figs. 5 and 6). As noted previously,
even idealized models of the SSM seasonal cycle require multi-
ple parameters that are dependent on land surface properties
(e.g., Laio et al. 2002). While soil hydraulic properties are

unlikely to vary considerably on seasonal time scales, vegeta-
tion will in many regions, impacting evapotranspiration and
thus soil moisture. We speculate that eco-evolutionary adapta-
tion by plants to their environment (e.g., Eagleson 2002;
Harrison et al. 2021) results in strong correlation between cli-
mate and vegetation, allowing climate variables to adequately
explain variability that undeniably must include biological con-
tributions, at least to first order.

As noted earlier, absolute values of soil moisture differ sub-
stantially between land surface models, even when driven by the
same atmospheric forcings, but a linear rescaling is typically suf-
ficient to dramatically improve the agreement between models
(Koster et al. 2009). Koster et al. (2009) argued that this implies
“the true information content … of a model soil moisture prod-
uct lies not in its absolute magnitudes but in its time variations”
(p. 4333; italics from original). Our study provides a physical
argument for why this is the case: given information on P and
Rsd, even an extremely simple model is capable of simulating
seasonal variations in SSM anomalies quite well. To the extent
that models accurately simulate P and Rsd, they will likely accu-
rately simulate seasonal time variations in SSM, regardless of
differences in land surface model parameterizations.

5. Limitations

Beyond the limitations already discussed, we here note
several other limitations of our analysis. Our results do not

FIG. A1. As in Fig. 5, but using gridded TerraClimate PET instead of the simple formulation PET [where PET5 0:8Rsd(t)= rk( )].
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necessarily generalize to other temporal or spatial scales.
Spatially, this study has focused on SSM, and its dynamics
may differ substantially from those of deeper soil water sto-
rages. In our conceptual model, the approximation of Dz → 0
(and the elimination of the time derivative in the land surface
water balance) is reasonable for SSM but not for deeper
soil layers. The presence of the time derivative introduces
changes to the phase and amplitude of the seasonal cycle that
become more important as Dz increases (e.g., Laio et al.
2002).

Temporally, this study has focused on the seasonal cycle of
SSM, but the conceptual model will not necessarily generalize
to other time scales. Satellite observations of soil moisture
typically have a repeat time of ∼3 days, meaning that variability
at subweekly time scales is difficult to resolve globally. The
satellite record is not currently long enough to examine temporal
variability at longer time scales, including trends and interannual
variability that have been of interest in studying surface tempera-
tures (e.g., Stine and Huybers 2012). However, we can be confi-
dent that the conceptual model will not work at daily or subdaily
time scales, in which case SSM exhibits sharp spikes in response
to precipitation followed by exponential decay on time scales of
days to weeks (McColl et al. 2017b, 2019a). The conceptual
model includes no “memory” of past events, meaning its pre-
dicted SSM would spike rapidly at the onset of precipitation

before unrealistically returning to zero immediately once pre-
cipitation stops.

6. Conclusions

To our knowledge, this is the first study to characterize
and explain the SSM seasonal cycle using global observa-
tions. An unsupervised clustering algorithm was used to
summarize the observed seasonal cycles by partitioning
them into one of five regimes (Fig. 1): one peaking in its
hemisphere’s winter (regime 1), three peaking outside its hemi-
sphere’s winter (regimes 2, 3, and 4), and one with no distinct sea-
sonality (regime 5). Each regime appears on multiple continents,
in both hemispheres, and across varied local climates. Regime 5
was most common, typically appearing in the most arid and least
arid regions. Regime 1 appears mainly outside the tropics, while
the reverse is true of regimes 2, 3, and 4. Furthermore, it is worth
noting that the observed SSM seasonal cycle within a given re-
gime agrees across both the tropics and extratropics (Fig. 5; see
black lines for observed SSM cycles), highlighting that the clus-
ter analysis (section 2b) on the SMAP observations performs
well across all regions (i.e., the tropics and extratropics).

To understand the climatic causes of these spatial patterns,
we trained a random forest model to reproduce the observed
SSM regimes using climate data (Fig. 2). The model reproduced

FIG. A2. Precipitation minus PET [where PET 5 0:8Rsd(t)= rk( )] anomalies seasonal cycle by region (second and fourth rows) and clus-
ter (columns). Observed (SMAP) soil moisture anomalies by region (first and third rows) and cluster (columns). In all panels, solid lines
represent the LOESS smoothed monthly values for all pixels in a given regime and hemisphere and dashed lines represent the 25th- and
75th-percentile values.
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the observed SSM regimes quite well with just P and Rsd as
inputs (Fig. 3; Table 1). Information on air temperature was
neither essential to, nor particularly effective in, achieving
reasonable model accuracy.

To explain these results, we introduced an intentionally simple
conceptual model of the SSM seasonal cycle [Eq. (2)], which
only requires P and Rsd as inputs. The model is physically
based, using pre-existing simplifications to the land surface wa-
ter budget (Fig. 4), and includes zero calibration parameters.
The conceptual model was broadly successful in reproducing
the SSM seasonal cycle in each regime (Figs. 5 and 6), whereas
alternative models of comparable complexity were not
(Figs. A2 and A3). Regimes 2, 3, and 4 are mainly found in
the tropics, where there is little seasonal variability in Rsd;
thus, seasonality in P determines seasonality in SSM in
these regions. Regime 1 is mainly found outside the tropics,
where seasonality in Rsd dominates seasonality in P, and
thus determines the seasonal cycle of SSM in these regions.
Regime 5 is prevalent both in the tropics and extratropics,
but for different reasons. In the tropics, seasonality in both
P and Rsd is muted for regions in regime 5, resulting in mini-
mal SSM seasonality. In contrast, in the extratropics, seaso-
nality in Rsd is large; however, PET ∝ Rsd is consistently
much greater than P for extratropical regions in regime 5
throughout the year, resulting in minimal SSM seasonality.

We have shown that spatial variability in the seasonal cycle of
SSM is explained well by a simple model [Eq. (2)], which re-
quires only two inputs (P and Rsd) and no parameters requiring
calibration. The model is surprisingly simple: for example, it
does not require information on vegetation or land cover. Future
work is planned to test the model at finer temporal and spatial
scales. If impacts of clouds are neglected as a further approxima-
tion, it may be possible to further simplify the model by using
top-of-atmosphere shortwave radiation as an input}which can
be modeled accurately as a function of time and location}rather
than Rsd. This would effectively reduce the model’s required in-
puts to only precipitation. Since historical records of precipitation
extend much further back in time than those of soil moisture,
our model would effectively extend the soil moisture record
back in time. This may prove useful in characterizing trends and
interannual variability in the SSM seasonal cycle, two tasks that
are currently not possible due to the short length of the satellite
soil moisture record. In addition, to the extent that the model
holds, predicted changes in global mean precipitation in a warm-
ing world based on fundamental physics (Held and Soden 2006)
can be directly translated into predicted changes in global mean
soil moisture; this would be useful since there are currently no
simple theoretical constraints on changes in soil moisture in a
warming world. More broadly, our work contributes to a grow-
ing recent literature on simple models of continental climate: in

FIG. A3. Precipitation anomalies seasonal cycle by hemisphere (second and fourth rows) and cluster (columns). Observed (SMAP) soil
moisture anomalies by hemisphere (second and fourth rows) and cluster (columns). In all panels, solid lines represent the LOESS
smoothed monthly values for all pixels in a given regime and hemisphere and dashed lines represent the 25th- and 75th-percentile values.
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particular, models of evapotranspiration (McColl et al. 2019b;
McColl and Rigden 2020; Chen et al. 2021), summertime sur-
face temperature variability (Vargas Zeppetello et al.
2020a,b; Vargas Zeppetello and Battisti 2020), and relative
humidity (Byrne and O’Gorman 2016, 2018), among others.
Connecting these theories may provide a promising direction
for future progress.
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APPENDIX A

Additional Figures and Tables Supporting Model Analyses

Table A1 shows the number of pixels in each category of
the predicted and observed regimes. Table A2 provides

FIG. B1. As in Fig. 1, except that analysis was performed using only retrievals that had recommended quality (i.e., retrieval_qual_flag5 0 or 8)
and complete weekly composite records (i.e., 52 weeks without any gap filling).
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performance statistics in each regime for the random forest
model. Values are computed using the following equations:

Sensitivity 5
Number of true positives

Number of true positives 1 Number of false negatives
,

Specificity 5
Number of true negatives

Number of true negatives 1 Number of false positives
,

PPV 5
Number of true positives

Number of true positives 1 Number of false positives
,

NPV 5
Number of true negatives

Number of true negatives 1 Number of false negatives
·

Figure A1 repeats the analysis presented in Fig. 5, except using
gridded TerraClimate PET rather than the simple formulation
used in Fig. 5. Figures A2 and A3 show the performance of two
alternative models of s(t): P 2 PET (Fig. A2) and P (Fig. A3).

APPENDIX B

Figures Supporting Analysis with Highest-Quality
Retrievals Only

Figures B1 and B2 correspond to the analysis performed
using only pixels with the highest-quality retrievals (i.e., re-
trieval_qual_flag 5 0 or 8) and with complete weekly com-
posite records (i.e., 52 weeks without any gap filling). This

is approximately equivalent to excluding regions with dense
forests or with periodically frozen soil.
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