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ABSTRACT: The historical rise of irrigation has profoundly mitigated the effect of drought on agriculture in many parts
of the United States. While irrigation directly alters soil moisture, meteorological drought indices ignore the effects of irri-
gation, since they are often based on simple water balance models that neglect the irrigation input. Reanalyses also largely
neglect irrigation. Other approaches estimate the evaporative fraction (EF), which is correlated with soil moisture under
water-limited conditions typical of droughts, with lower values corresponding to drier soils. However, those approaches
require satellite observations of land surface temperature, meaning they cannot be used to study droughts prior to the
satellite era. Here, we use a recent theory of land–atmosphere coupling}surface flux equilibrium (SFE) theory}to esti-
mate EF from readily available observations of near-surface air temperature and specific humidity with long historical
records. In contrast to EF estimated from a reanalysis that largely neglects irrigation, the SFE-predicted EF is greater at
irrigated sites than at nonirrigated sites during droughts, and its historical trends are typically consistent with the spatial
distribution of irrigation growth. Two sites at which SFE-predicted EF unexpectedly rises in the absence of changes in irri-
gation can be explained by increased flooding due to human interventions unrelated to irrigation (river engineering and
the expansion of fish hatcheries). This work introduces a new method for quantifying agricultural drought prior to the
satellite era. It can be used to provide insight into the role of irrigation in mitigating drought in the United States over the
twentieth century.

SIGNIFICANCE STATEMENT: Irrigation grew profoundly in the United States over the twentieth century, increas-
ing the resilience of American agriculture to drought. Yet observational records of agricultural drought, and its
response to irrigation, are limited to the satellite era. Here, we show that a common measure of agricultural drought
(the evaporative fraction, EF) can be estimated using widespread weather data, extending the agricultural drought
record decades further back in time. We show that EF estimated using our approach is both sensitive and specific to the
occurrence of irrigation, unlike an alternative derived from a reanalysis.
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1. Introduction

The irrigated area in the United States grew from 3 million
acres in 1890 to more than 58 million acres in 2017, with half
of that growth occurring after the 1950s (Hrozencik and
Aillery 2021; McLeman et al. 2014). This profound growth
has increased the resilience of American agriculture to drought.
It also complicates the study of long-term changes in drought
due, for example, to climate change, since even if droughts are
becoming more severe, the rise of irrigation may result in a
perception that they are less severe. For example, while the
Dust Bowl drought of the 1930s is well known, droughts of
arguably comparable magnitude have occurred several times in

the United States since then, with much less acknowledgment:
for example, the Texas drought of the 1950s (Woodhouse and
Overpeck 1998; Worster 2004; Seager et al. 2005; Cook et al.
2007). The cooling effects of irrigation can also mask rises in
near-surface air temperatures (Lobell and Bonfils 2008; Mueller
et al. 2016; Nocco et al. 2019).

Droughts are extended periods of anomalously dry condi-
tions. Periods of anomalously low precipitation are termed
“meteorological droughts”; and periods of anomalously low
soil moisture are termed “agricultural droughts.” Clearly, the
occurrence of these two types of drought are related. How-
ever, in irrigated regions, they can be disconnected: even if there
is anomalously low rainfall for an extended period (a meteoro-
logical drought), an irrigated region will not necessarily experi-
ence anomalously low soil moisture (an agricultural drought).
For example, Lu et al. (2020) reported lower sensitivity of crop
yields to meteorological drought in irrigated regions compared
to nonirrigated regions.

The distinction between meteorological and agricultural
droughts is often blurred. For example, the Palmer drought
severity index (PDSI; Palmer 1965) is a conventional index
used to estimate the severity of droughts. In its calculation,
precipitation and temperature data are processed through
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an empirical water balance model, in a way that can appear
superficially related to soil moisture, and thus agricultural
drought. However, the PDSI is, at best, a highly ambiguous
measure of agricultural drought (Alley 1984), and is better
suited for studying meteorological drought. Indeed, the origi-
nal report introducing the PDSI is entitled “Meteorological
Drought” (Palmer 1965). Dai et al. (2004) noted that “the
PDSI is an approximate measure of the cumulative effect of
atmosphericmoisture supply and demand (i.e., meteorological
droughts) … we emphasize that, by design, the PDSI is not
always a good measure of soil moisture and thus agricultural
droughts” (italics in original). In cases where agricultural
drought and meteorological drought are strongly correlated,
the PDSI (and similar indices of meteorological drought) may
still provide useful information on agricultural drought. But,
in regions where irrigation is an important component of the
soil water balance, agricultural drought and meteorological
drought can be entirely uncorrelated. For these reasons, we
argue that the meteorological drought indices are unsuitable
tools for quantifying the impacts of irrigation on agricultural
drought severity.

What should be used instead? Ideally, long-term observa-
tions of soil moisture. However, soil moisture observations
are spatially sparse (Vicente-Serrano et al. 2012), and the sat-
ellite record does not extend far enough back in time to study
some of the most important droughts in the historical record
(e.g., the Dust Bowl or the 1950s drought). Here, we consider
a quantity that is strongly correlated with soil moisture, at
least during water-limited conditions typical of droughts: the
evaporative fraction (EF), the ratio of latent heat flux to total
surface turbulent fluxes. EF increases with increasing water
availability in water-limited regions, to the extent that it is
often modeled conceptually as a simple function of (normal-
ized) soil moisture (e.g., Koster et al. 2009; Seneviratne et al.
2010; Koster and Mahanama 2012). In irrigated regions,
CMIP6 models with irrigation schemes}compared to mod-
els without irrigation schemes}better reproduced anoma-
lies of surface fluxes in observations (Al-Yaari et al. 2022),
further supporting the notion that the EF is sensitive to
irrigation.

However, like soil moisture, observations of the surface
fluxes needed to estimate EF also have limited spatial and
temporal coverage. For this reason, a range of approaches
exist in the literature for estimating variants of the EF. For
example, the evaporative stress index (ESI; Anderson et al.
2011)}the ratio between actual and potential evapotranspiration
retrieved from theAtmosphere–Land Exchange Inverse (ALEXI;
Anderson et al. 1997) surface energy balance model}is an
agricultural drought index based on observational land sur-
face temperature that contains effects of irrigation and other
factors decoupled from precipitation (Anderson et al. 1997,
2011). While these approaches are useful for studying drought
in the present and the recent past, they cannot be used to un-
derstand droughts prior to the advent of the satellite record,
since they require, at minimum, observations of land sur-
face temperature and surface radiation (AghaKouchak et al.
2015). Historical observations of surface radiation do not exist
prior to the satellite era. In addition, weather stations have

historically measured near-surface air temperature rather
than land surface temperature. This difference is not trivial:
assuming surface temperature and near-surface air tempera-
ture are identical is equivalent to assuming that the sensible
heat flux is zero, which implies that EF 5 1 everywhere.
That assumption is clearly inappropriate over land. Thus,
current approaches for estimating EF cannot be used to
study agricultural droughts occurring earlier than the satel-
lite record.

In this study, we estimate EF from widespread weather
data using surface flux equilibrium (SFE) theory (McColl et al.
2019; McColl and Rigden 2020). SFE takes advantage of the
fact that wetter regions, with higher values of EF, exhibit
greater evaporation, which causes the near-surface atmo-
spheric humidity to be relatively high. Similarly, higher values
of EF correspond to lower surface sensible heat fluxes, which
causes near-surface atmospheric temperatures to be relatively
low. SFE uses these hypotheses to estimate EF solely using
near-surface weather data (temperature and humidity) and
does not require information on land surface variables, in-
cluding soil moisture, or calibration of site-specific parame-
ters. Crucially, the SFE estimate of EF should, in principle, be
sensitive to irrigation, without requiring explicit information
on irrigation. The SFE theory has been extensively validated
(McColl and Rigden 2020; Chen et al. 2021) and shown to
perform well in water-limited regions and in the continental
United States. It has also been used to successfully estimate
root-zone soil moisture (Raghav and Kumar 2021). Since SFE
hypothesizes that nonlocal advective fluxes of moisture and
heat are typically small compared to local surface fluxes, it is
an inappropriate tool in regions in which this assumption is
strongly violated, such as near coastlines. However, the SFE
hypothesis appears to work well in much of the inland United
States (McColl and Rigden 2020; Chen et al. 2021), which is
the focus of this study, despite the presence of land surface
heterogeneity and associated advection in these regions. The
major advantage of SFE over previous approaches based on
evaporation is that it is capable of estimating EF using avail-
able weather station data (near-surface air temperature and
specific humidity). This means that it can be used to study
agricultural drought prior to the satellite era, unlike previous
approaches.

In this study, we will show empirically that EF estimated us-
ing SFE is sensitive and specific to irrigation, in contrast to an
estimate from a reanalysis that largely neglects irrigation. Be-
cause the theory only requires near-surface air temperature
and specific humidity as inputs and does not require site-
specific calibration, the agricultural drought record can, in
principle, be extended as far back as the meteorological re-
cord allows, opening up new opportunities for understanding
drought in the twentieth century.

The manuscript is structured as follows. In section 2, we de-
scribe the data used in this study and how they are analyzed.
Section 3 presents results of analyses of data from the present
and the historical record. In section 4, we summarize the
study’s main findings and discuss its limitations and possible
future applications.
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2. Methods

a. Analysis rationale

We aim to test the hypothesis that SFE-estimated EF
(EFSFE) is sensitive and specific to irrigation, whereas an esti-
mate derived from the ERA5 reanalysis (EFERA5) that largely
neglects irrigation is not. To do this, we seek to compare
EFSFE and EFERA5 at irrigated and nonirrigated points in
space and time and identify systematic differences between
the two quantities during droughts. After correcting for other
confounding factors, the remaining differences are attribut-
able to irrigation. Testing this hypothesis is complicated by
the fact that long-term irrigation data are limited. Estimation
of irrigation water withdrawal by hydrological models is unre-
liable (Puy et al. 2022), and irrigation data are certainly not
available at the spatial and temporal resolution of the weather
and reanalysis data. Thus, our analysis is structured around
the temporal and spatial scale and coverage allowed by avail-
able irrigation data.

The analysis rationale is summarized in Fig. 1. In a meteoro-
logical drought, irrigation reduces the deficit in soil moisture.
Since the ERA5 reanalysis does not include irrigation, we expect
that EFERA5 will still predict a drought even though irrigation
has replenished soil moisture. In contrast, we expect that EFSFE
will not predict a drought in irrigated regions, since EFSFE is sen-
sitive to the influence of irrigation on air temperature and hu-
midity. When there is no meteorological drought, we do not
expect there to be systematic differences between the two quan-
tities. More specifically, we test the following hypotheses:

1) H1. During periods of meteorological drought, EFSFE is
greater at irrigated sites, compared with nonirrigated sites.

2) H2. Outside periods of meteorological drought, there are
negligible differences in EFSFE between irrigated and
nonirrigated sites.

3) H3. Both during, and outside of, periods of meteorologi-
cal drought, there are negligible differences in EFERA5 be-
tween irrigated and nonirrigated sites.

4) H4. In regions where irrigation has increased with time,
EFSFE has also increased during meteorological droughts,
relative to EFERA5.

5) H5. In regions where irrigation has not increased with
time, there are negligible changes in EFSFE during meteo-
rological droughts, relative to EFERA5.

Hypotheses H1, H2, and H3 test the sensitivity and specific-
ity of EFSFE to irrigation variability in space. Hypotheses H4
and H5 test the sensitivity and specificity of EFSFE to irriga-
tion variability in time.

b. Evaporative fraction

The evaporative fraction is the ratio between surface latent
heat flux and the sum of latent heat and sensible heat fluxes. In
water-limited conditions typical of agricultural droughts, the EF
is an approximately linear increasing function of soil moisture
(Koster et al. 2009; Seneviratne et al. 2010; Koster andMahanama
2012). Various approaches exist for estimating EF using satellite
observations (Anderson et al. 1997, 2011; AghaKouchak et al.
2015). Estimating EF prior to the satellite era requires a differ-
ent approach, detailed in the following section.

1) ESTIMATION OF EF USING SFE THEORY

We briefly review SFE, a phenomenological theory of
evapotranspiration used in this study, but refer the reader to

FIG. 1. Schematic overview of this study. During meteorological droughts, over irrigated re-
gions, soil is moistened by irrigation, which leads to a higher local evaporative fraction. While
EFSFE is sensitive to this shift in soil moisture state, EFERA5 is not. Thus, if there is a meteorolog-
ical drought, we expect EFSFE in irrigated regions to be higher than nonirrigated regions, but not
EFERA5. In contrast, when there is no drought, the two drought indices at different regions
should both be insensitive to irrigation.
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McColl et al. (2019) and McColl and Rigden (2020) for fur-
ther details. The near-surface atmospheric state is sensitive, to
some degree, to surface fluxes. Thus, higher near-surface air
temperatures are at least partly caused by higher surface sen-
sible heat fluxes; and higher values of near-surface specific hu-
midity are partly caused by higher surface latent heat fluxes.
If the near-surface atmospheric state is sufficiently sensitive to
surface fluxes, then the surface moistening and heating terms
in the near-surface relative humidity budget approximately
balance. SFE assumes a strong sensitivity of the near-surface
atmospheric state to surface fluxes, and that the surface moist-
ening and heating terms in the near-surface relative humidity
budget exactly balance. This further implies that the evapora-
tive fraction can be estimated using the relation

EFSFE 5
l2qa

l2qa 1 cpRyT
2
a

,

where EFSFE is the SFE-predicted EF, Ry 5 461.5 J kg21 K21

is the gas constant of water vapor, cp 5 1004 J kg21 K21 is the
specific heat capacity of air, Ta is the near-surface air tempera-
ture (K), l 5 2.5 3 106 J kg21 is the latent heat of vaporiza-
tion, and qa is the near-surface specific humidity (kg kg21).

The main advantage of SFE over other approaches is its
simplicity: unlike most approaches, it requires no land surface
information and no tuning of calibration parameters. This is
particularly important for our purposes, since we are inter-
ested in past droughts for which it is rare to have direct obser-
vations of land surface variables, such as soil moisture, which
are essential inputs to other models of EF. Its use is not rec-
ommended in coastal regions, where the assumptions of SFE

are expected to be strongly violated by land–sea breeze meso-
scale circulations. It also underestimates EF somewhat for
particularly high values of EF, and overestimates it for low
values, resulting in a compressed dynamic range [similar be-
havior is also found in other approaches, e.g., Salvucci and
Gentine (2013)]. Nevertheless, despite these caveats and
SFE’s simplicity, it is surprisingly accurate, with errors compa-
rable to those in state-of-the-art eddy covariance observations
(McColl and Rigden 2020) and lower than those in a complex
reanalysis (Chen et al. 2021) across a wide range of conditions
in inland continental regions.

2) HADISD SITE-LEVEL DATA

The HadISD global subdaily station dataset v3.1.0.2019f
(Dunn et al. 2016) includes observations of temperature and
humidity from the 1930s to the present across the continental
United States (CONUS) region. We use site-level (i.e., not
gridded) temperature and humidity data to estimate EF using
the SFE theory. Using the global irrigated area map at 10 km
resolution in 2000 from the International Water Management
Institute (IWMI; Thenkabail et al. 2009), we selected four
groups of irrigated sites and four groups of nonirrigated sites
from the full set of HadISD sites in the CONUS region (Fig. 2).
The four irrigated regions are located in Idaho’s Snake River
basin (ID), Nebraska (NE), the Great Plains region of Kansas
and Texas (KT), and the lower Mississippi River basin (MS).
We did not include the Central Valley in California due to
the fact that it is close to the coast, where the assumptions of
SFE are likely strongly violated (McColl and Rigden 2020).
Although two NE sites and two MS sites are located in counties
with relatively low irrigation rates, the elimination of those

FIG. 2. The International Water Management Institute (IWMI) 10-km irrigation area map in
2000 (https://waterdata.iwmi.org/Applications/GIAM2000/), with irrigated regions marked in
green. Sites from the HadISD database located in irrigated regions are marked in blue; sites
from nonirrigated regions are marked in red. Clusters of irrigated sites are grouped into ID
(Idaho region), NE (Nebraska), MS (around the Mississippi River), and KT (Kansas and Texas);
clusters of nonirrigated sites are grouped into NM (New Mexico), SD (South Dakota), MO
(Missouri), and KY (Kentucky).
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four sites does not qualitatively change any of the results in this
study (not shown). The four nonirrigated regions are located
in the region west of KT (around New Mexico, hereafter NM),
the region north of NE (around South Dakota, hereafter SD),
the region between KT and MS (around Missouri, hereafter
MO), and the region east of MS (around Kentucky, hereafter
KY). Among all the HadISD sites in the irrigated and nonirri-
gated areas, we each selected seven or eight sites that 1) had
complete and valid meteorological observational data extending
to at least 1973 if possible and 2) were within 500 km of other
sites in the same group. Please refer to Tables S1 and S2 in the
online supplemental material for the location and temporal cov-
erage of the selected sites.

While EF is approximately linearly related to soil moisture
under water-limited conditions typical of droughts, the pa-
rameters of the linear relation vary in space. To more easily
make spatial comparisons, we consider anomalies of EF rela-
tive to the mean estimated over the period 1950–2018 (the
longest window of time that overlaps with ERA5 reanalysis
data), calculate the 13-month moving average, and normalize
by the standard deviation at each site. For brevity, we do not

introduce new notation for normalized anomalies: for the re-
mainder of the manuscript, any reference to EFSFE or EFERA5

refers to a normalized anomaly. When generating time series
of the SFE-predicted EF anomaly (EFSFE), missing data were
neglected when calculating moving averages. The estimated
anomalies correlate reasonably well with both anomalies of
EF estimated using the ERA5 reanalysis (EFERA5) and soil
moisture from the reanalysis (Fig. 3).

3) ERA5 REANALYSIS DATA

We also include estimates of EF obtained from the ECMWF
ERA5 reanalysis data (Hersbach et al. 2020). To compare this
gridded reanalysis dataset with site-level data, we also generated
averages of each group based on the gridded location of
HadISD sites. Anomalies were estimated in the same way
as for the HadISD site-level data.

While site-level observations and reanalysis both include cli-
matic and meteorological factors, the most relevant difference
between EFSFE and EFERA5 is that the land-use distribution of
EFERA5 does not evolve with time. Long-term influences on
EF from changes in human activity such as irrigation, river

FIG. 3. Long-term consistency between EFSFE (black), EFERA5 (blue), and 13-month-smoothed normalized anoma-
lous soil moisture in ERA5 (Q, red) from 1950 to 2018. The sites are the four irrigated sites: (a) ID, (b) NE, (c) MS,
and (d) KT. Qualitatively similar results are found at the nonirrigated sites (not shown).
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engineering, and other hydrologic construction projects are
not explicitly included in ERA5. ERA5 does assimilate some
near-surface air temperature and humidity data, but it is highly
limited in spatial coverage (Hersbach et al. 2020). It also as-
similates some C-band scatterometer soil moisture retrievals
(Hersbach et al. 2020), but they only sense moisture in a very
shallow layer of soil and are less accurate than other soil mois-
ture retrievals (Chen et al. 2018). Thus, using EFERA5 helps us
1) verify the overall consistency with EFSFE in different re-
gions and 2) isolate the effect of human activities, by compar-
ing EFERA5 with EFSFE.

c. Irrigation data

The United States Department of Agriculture (USDA) has
county-level irrigated area census data dating back to 1974
(USDA National Agricultural Statistic Service 2022). The
census was taken every 4–5 years. We estimated trends in irri-
gated areas in different site groups by calculating the propor-
tion of irrigated area in the counties where the sites are
located (counties listed in Tables S1 and S2).

To best investigate the effects of irrigation, we focus on the
growing season}May–September (MJJAS)}in all of our
analyses.

d. Palmer drought severity index

Outside irrigated areas, meteorological and agricultural
droughts often occur together. We use the PDSI to classify
periods of meteorological drought in this study, for consis-
tency with previous studies. The PDSI is generated using pre-
cipitation and temperature data as inputs into a water-balance
model (Palmer 1965; Alley 1984). We use monthly gridded
PDSI data (Dai et al. 2004). The spatial resolution of the data
is 2.58 latitude 3 2.58 longitude. The dataset is available from
1948 to 2014. This is longer than the available record of county-
level irrigation census data (USDA National Agricultural
Statistic Service 2022), so we focus on the period 1974–2012.

The PDSI indicates drier than normal conditions when it is
negative. The threshold of PDSI that determines the onset of
a drought is somewhat arbitrary. In testing hypotheses H1
and H2, we adopt the same convention as the U.S. Drought
Monitor, which uses a threshold of PDSI # 22 for its defini-
tion of a drought. That threshold also corresponds to the
threshold for a “moderate drought” proposed in Palmer’s
original report (see Table 11 of Palmer 1965). We use the
threshold PDSI . 0 to identify periods that are not in
drought, again consistent with the U.S. Drought Monitor and
Palmer’s original report. In testing hypotheses H4 and H5, we
would ideally like to use the same thresholds. However, we
are not able to do this due to limits on the analyses’ temporal
window imposed by the irrigation data, which result in insuffi-
cient sample sizes when a threshold of PDSI # 22 is used
(described further in section 3b). As a compromise between
these considerations, we use a threshold of PDSI , 0 to de-
fine a drought in testing hypotheses H4 and H5. While not
ideal, this definition is at least consistent with conditions being
drier than average. For both sets of analyses, we investigate
the sensitivity of our analyses to these choices of thresholds.

e. Significance testing

We use Student’s t tests to evaluate the hypotheses H1–H5
listed earlier in section 2a. More precisely, for each hypothesis
H1–H5, we test the complementary null hypotheses H10–H50:
for example, for H1, the complementary null hypothesis H10 is
“During periods of meteorological drought, EFSFE is no
greater at irrigated sites, compared with nonirrigated sites.”
The estimated p value is the probability of observing the data,
assuming the null hypothesis is true. If the p value is sufficiently
small}where a common choice of “sufficiently small” is taken
to be p , 0.05}then we may reject the null hypothesis, in
which case the result is significant at the 95% level.

However, if multiple significance tests are conducted, it be-
comes increasingly likely that a statistically significant result
will arise spuriously due to chance (Wilks 2016). To correct
for this, we control the “false discovery rate” using the ap-
proach of Benjamini and Hochberg (1995), recommended in
Wilks (2016) [see their Eq. (3)]. After making these correc-
tions, the appropriate threshold for statistical significance is
lower than 0.05. To avoid confusion, rather than reporting
the p value for each statistical test, throughout the manu-
script, we simply report results as being statistically signifi-
cant or insignificant.

Since hypotheses H1–H3 specifically test whether or not EF
is greater at irrigated sites than nonirrigated sites, one-tailed
t tests were performed. For hypotheses H4 and H5, absolute
temporal changes in EF may be positive or negative, even
where irrigation has increased (e.g., due to changes in climate).
We therefore perform two-tailed t tests for H4 and H5.

3. Results

In this section, we will first test spatial hypotheses H1–H3
using data from the “present”: the period 2000–12. Then, we
will test temporal hypotheses H4 and H5 using historical irri-
gation trends.

a. Present (2000–12)

Since our selections of irrigated and nonirrigated sites are
based on the IWMI irrigated area map for the year 2000 (Fig. 2),
we first compare all the available data during the growing sea-
son from 2000 to 2012. In Fig. 4, EFSFE (top panel) and
EFERA5 (bottom panel) are plotted against PDSI. The scatter-
plots (Figs. 4b,e) show irrigated data in blue and nonirrigated
data in red. Each dot indicates the mean value of a site in a
certain month. Panels on the two sides show the distribution
of EFs for times in which droughts occurred (Figs. 4a,d), and
did not occur (Figs. 4c,f).

During meteorological droughts, EFSFE is significantly larger
over irrigated regions, compared with nonirrigated regions
(Fig. 4a). This supports hypothesis H1. In contrast, outside
periods of meteorological drought, values of EFSFE in the
irrigated and nonirrigated regions are not significantly differ-
ent (Fig. 4c). This supports hypothesis H2. Consistent with
hypothesis H3, there is no statistically significant difference
in EFERA5 between irrigated and nonirrigated regions, both
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during droughts (Fig. 4d), and outside periods of drought
(Fig. 4f).

Our results are not particularly sensitive to reasonable var-
iations in the PDSI threshold used here to define a drought.
For example, changing the drought threshold from PDSI #

22 to PDSI # 21.5 does not change the results of the signifi-
cance tests.

b. Historical trends

Next, we examine historical trends in irrigation. Both EFERA5

and EFSFE vary in time for reasons other than changes in irriga-
tion (e.g., due to changes in climate). However, long-term

changes in the difference between the two datasets should be
due to processes that are not modeled in ERA5 but can still in-
fluence real-world EF. Such potential factors include irrigation
and other hydrologic changes caused by humans.

To investigate hypotheses H4 and H5, we compared EF be-
tween two 13-yr windows: 1970–82 and 2000–12. Based on
USDA county-level data for the area of irrigated land, we
find increasing trends in irrigated area in MS, NE, and NM
from 1974 to 2012 (Fig. 5). At MS, NE, and NM, the proportion
of county irrigated increased at a rate of 8.75%, 4.19%, and
0.20% per decade, respectively (p, 0.01, using a Mann–Kendall
test). Climatological and meteorological factors influence both

FIG. 4. (b) Scatterplot of PDSI and EFSFE anomalies for the period 2000–12 at irrigated (blue) and nonirrigated (red) sites. (a) Probabil-
ity density functions (PDFs) of EFSFE at irrigated (blue) and nonirrigated (red) sites when PDSI # 22 (corresponding to periods of
drought). The solid and the dashed horizontal lines indicate the mean and median of the samples, respectively. The asterisk (*) indicates a
statistically significant difference. (c) As in (a), but with PDSI . 0 (corresponding to periods that are not drought). (d)–(f) As in (a)–(c),
but with EFERA5 instead of EFSFE.
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EFSFE and EFERA5, but irrigation is only visible to EFSFE. Thus,
over the three regions with increasing trends in irrigated land,
EFSFE during meteorological droughts is expected to have in-
creased, relative to changes in EFERA5.

As noted in section 2, use of the PDSI # 22 drought
threshold is precluded by low sample sizes when analyzing the
historical data. This problem is illustrated in Fig. S1. For ex-
ample, using a threshold of PDSI # 22 would result in six out
of eight sites having sample sizes less than n 5 3, which is
clearly insufficient. We thus use a threshold of PDSI , 0 to
define a drought in testing hypotheses H3–H5 with the histori-
cal data, and examine the sensitivity of results to this choice.

The data at the three sites with increasing irrigation show
an increase in EFSFE relative to EFERA5 during meteorologi-
cally dry periods. They are thus consistent with hypothesis
H4. Figures 6 and 7 show EFSFE and EFERA5 in the two win-
dows over regions with and without increasing trends in irri-
gation, respectively. Among the three sites that underwent an
increase in irrigated land (Fig. 6), in NE, EFSFE is significantly
greater in 2000–12 than in 1970–82 (Fig. 6a), while EFERA5 shows
no significant difference between the two windows (Fig. 6d). In
MS, EFSFE is significantly greater in 2000–12 than in 1970–82
(Fig. 6b), in contrast to EFERA5, which does not change signifi-
cantly (Fig. 6e). Finally, in NM, EFSFE is not significantly greater
in 2000–12 than in 1970–82 (Fig. 6c), but this is in contrast to
EFERA5, which significantly decreased (Fig. 6f). This is consistent
with an increase in EFSFE relative to EFERA5 in NM. Therefore,
all three sites are consistent with H4.

Of the five remaining sites (all sites in which there was no ap-
preciable rise in irrigation, Fig. 7), three of them are consistent
with hypothesis H5, but two are not. At KT and KY, there is no

significant increase in EFSFE or EFERA5 (Figs. 7b,e,g,j). At SD,
both EFSFE and EFERA5 increase significantly, implying that
changes in meteorology or climate are responsible for the
change, rather than irrigation (Figs. 7c,h). These three sites are
all consistent with hypothesis H5. However, the remaining two
sites (MO and ID) are not. In both MO and ID, EFSFE is sig-
nificantly greater in 2000–12 than in 1970–82, while EFERA5 is
not (Figs. 7a,d,f,i).

Human modifications to local hydrology, other than irriga-
tion, likely explain the anomalous observed responses at MO
and ID. For the MO sites, we suggest that construction along
the lower Missouri River has caused long-term changes in EF
during droughts. The lower Missouri River has undergone sig-
nificant engineering and construction programs, including
some construction in the 1970s. A side effect of these changes
has been an increased flood hazard in the region (Pinter and
Heine 2005). Among the eight MO sites, if we eliminate two of
the sites closest to the river, the results change from EFERA5

showing no statistically significant increase, to showing a statisti-
cally significant increase (Fig. S2). There is no change to EFSFE.
Thus, eliminating the two sites closest to the river makes the re-
sults at MO consistent with hypothesis H5. The flooding in-
duced by river engineering and construction at the MO sites is
unique and not expected to occur at other sites. NE and KT de-
pend on groundwater as the dominant source of irrigation,
rather than surface water flow (Evett et al. 2020). For MS, al-
though human activities influence the magnitude of flooding
events, variations in the frequency of floods in the lower Missis-
sippi River basin is dominated by climate variability and is thus
consistent between ERA5 and observations (Munoz et al.
2018). At MO, river engineering was found to lower the flow

FIG. 5. Changes in irrigated area since 1974, based on the USDA census (conducted every 4 or 5 years). Data with
asterisks (*) on the right indicate that both 1) there is a statistically significant monotonic increasing trend in irrigation
in the county (p, 0.01), based on a Mann–Kendall test, and 2) at least 1% of the county is irrigated. (left) Proportion
of county irrigated, based on USDA census data. Counties are listed in Tables S1 and S2. (right) As in the left panel,
but zoomed in.
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capacity, which leads to floods even when the same amount of
river flow would not lead to floods decades ago. In contrast,
river engineering at MS was found to magnify the severity when
there are flooding events in wet years, but there is no impact re-
ported on flow capacity in normal or dry years, to our knowl-
edge. Major flooding events around NM, SD, and KY are
mostly contributed by flash flooding from storm events that are
not related to river flow (flood information, National Weather
Service: https://www.weather.gov/safety/flood-map). Although
SD underwent some historical dam overflow events, the major
dams in the region were constructed before the 1970s. To our
knowledge, there is no elevated flood frequency due to river-
related constructions reported at sites other than MO. We thus
suggest that human activities regarding river engineering does
not significantly contribute to the difference between the evolu-
tion in EFERA5 and EFSFE at other sites.

For ID, we suggest that expansion of fish hatcheries likely ex-
plains shifts in EFSFE relative to EFERA5 at ID sites. Along the
irrigated valley in ID that we are interested in, there are four
fish hatcheries, where three of them were under development

in the 1970s and 1980s (Idaho Fish and Game 2022). Hagerman
Hatchery was constructed in 1932 and renovated in 1979, Niag-
ara Springs Hatchery was built in 1966 and renovated in 2013,
Magic Valley Hatchery began operations in the late 1980s, and
American Falls Hatchery was rebuilt during the mid-1980s. The
construction of fish hatcheries in Idaho can alter the exposure
of water to the atmosphere along the lower Snake River and
contribute to changes in local EF. In the six sites that exhibit
changes in EFSFE relative to EFERA5 in the past three decades
consistent with our expectation, only SD is around national fish
hatcheries. There are four major fish hatcheries in the region:
the Garrison Dam National Fish Hatchery, Valley City National
Fish Hatchery, DC Booth National Fish Hatchery, and Gavins
Point National Fish Hatchery. However, to our knowledge, all
four hatcheries appear to have completed construction before
1970 (U.S. Fish andWildlife Service: https://www.fws.gov/). Thus,
we suggest that the effects of fish hatchery construction is not an
obviously significant factor in sites other than ID.

These results are reasonably insensitive to varying the
PDSI , 0 drought threshold. Changing the threshold to

FIG. 6. Comparison between PDFs of the EF in 1970–82 (blue) and 2000–12 (yellow) when PDSI is negative for sites with increasing
trends in irrigation since the 1970s as shown in Fig. 5. Panels with an asterisk (*) on the upper right indicate statistically significant differ-
ences, where the color of the asterisk indicates the period in which EF was greater. The panels correspond to results for (a),(d) NE;
(b),(e) MS; and (c),(f) NM for (top) EFSFE and (bottom) EFERA5.
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PDSI # 20.5 requires eliminating KY from the analysis, be-
cause the sample size becomes insufficient. Of the remaining
seven sites, the conclusions are unchanged at six sites. The one
exception occurs at SD, where EFSFE no longer has a statisti-
cally significant change. As noted above, SD is a region where
EF is influenced by human interventions unrelated to irriga-
tion (fish hatcheries), a potentially confounding factor in the
analysis.

4. Discussion and conclusions

The rise of irrigation has profoundly moderated the effect
of drought on agriculture in many parts of the United
States. We argue that meteorological drought indices and
reanalysis proxies of soil moisture based on models without
irrigation schemes (such as EFERA5) are insufficient to re-
flect the actual moisture conditions in irrigated regions. Current
approaches based on the EF, a more direct measure of agricul-
tural drought, are limited to the satellite era (AghaKouchak
et al. 2015). In this study, we demonstrate that SFE theory can
be used to estimate EF from widely available weather data with
a long historical record. EFSFE is a useful measure of agricul-
tural drought that is sensitive and specific to irrigation and can
be used to study droughts prior to the satellite era, unlike cur-
rent approaches.

We employed multiple site-level observational data from
the HadISD dataset to estimate EFSFE and compared irri-
gated with nonirrigated regions in the CONUS. To control for
confounding spatial and temporal differences in EF unrelated
to irrigation, we further included EF from the ERA5 reanaly-
sis (EFERA5) in this study. Irrigation is largely neglected in
EFERA5 due to the lack of irrigation schemes and interactive
land-use changes in the reanalysis.

Using the available irrigation data, we tested five hypothe-
ses (listed in section 2a) using the rationale outlined in Fig. 1.
Consistent with hypothesis H1, EFSFE is significantly higher at
irrigated than at nonirrigated sites during droughts (Fig. 4).
This difference between irrigated and nonirrigated regions is
not significant outside periods of drought, which agrees with
hypothesis H2. The differences are also not due to spatial dif-
ferences in EF; if they were, they should be detectable in
EFERA5, but they are not, consistent with hypothesis H3.

Our historical comparison between EFSFE and EFERA5 dur-
ing droughts controls for changes in climate, and verifies hy-
potheses H4 and H5. The difference between changes in the
two EFs from the 1970s to the 2000s is broadly consistent with
the trends in proportion of county irrigated (Fig. 5). In regions
where irrigation increased, EFSFE also increased relative to
EFERA5 during meteorological droughts (Fig. 6), which is consis-
tent with hypothesis H4. This shift in EFSFE relative to EFERA5 is
not found in most regions without increasing irrigation (Fig. 7),
which is consistent with hypothesis H5. Two exceptions are found
in MO and ID; however, other irrigation-like modifications to the
landscape at these sites likely explain the discrepancy.

Our study is subject to several limitations. We assume dif-
ferences in EFSFE and EFERA5 are largely attributable to ir-
rigation or other human interventions not included in the
ERA5 reanalysis. However, at least some of the difference
is likely due to errors in EFERA5 and EFSFE. Nonetheless,
previous validation studies (McColl and Rigden 2020; Chen
et al. 2021) provide some reason to expect that such errors
do not dominate our analysis. It may be useful to examine
other evapotranspiration products beyond ERA5 in future
studies, but few ET products extend far enough back in time
to be useful in studying the historical record of agricultural
drought.

FIG. 7. As in Fig. 6, but for the other five sites without increasing trends in irrigation. Columns from left to right correspond to (a),(f) ID;
(b),(g) KT; (c),(h) SD; (d),(i) MO; and (e),(j) KY.
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Our study is also limited by the availability of reliable irri-
gation data, resulting in small sample sizes, particularly in
evaluating hypotheses H4 and H5. It may be useful to study
factorial irrigation experiments in future studies, in which the
irrigation signal can be cleanly isolated. However, such ex-
periments would not provide information on the historical
record.

In addition, while our analysis includes many of the most
important regions where irrigation occurs in the United
States, California’s Central Valley was excluded due to limita-
tions of SFE theory near coasts. We might expect hypothesis
H2 to be rejected in this region since, in climatically drier re-
gions like the Central Valley, there may still be differences in
EFSFE between irrigated and nonirrigated sites, even if the re-
gion is not technically in a drought. However, we do not see
any reasons specific to the Central Valley that would cause
the other hypotheses to be rejected.

Finally, the assumption used in SFE of no local advection
may be violated to some extent near boundaries of irrigated
regions, which can generate mesoscale circulations (Lo and
Famiglietti 2013; Lo et al. 2021). However, the effects are typ-
ically not large enough to induce large errors in the SFE esti-
mate, at least at the scales considered here. McColl and
Rigden (2020) tested the theory at many sites across the in-
land continental United States, and around the world. While
coastal regions were excluded, no other filtering was per-
formed for spatial homogeneity, and most of the sites evalu-
ated were spatially heterogeneous. The results found that, at
a majority of sites, errors in the SFE predictions were similar
to errors in the state-of-the-art eddy covariance observations
used to test the theory, even after substantial quality control
of the observations. While not all of these sites were irrigated,
they included some irrigated regions, and all regions inevita-
bly included other sources of heterogeneity. These results
are further supported by Chen et al. (2021), who used a
completely independent estimate of evaporation at larger spa-
tial scales to reach a similar conclusion. We are not arguing
that landscape heterogeneity, including that due to irrigation,
does not induce mesoscale circulations and advection. We are
simply arguing that, to the extent it exists, and induces errors
in our approach, those errors are generally not large, at least
in comparison to typical eddy covariance observation errors.
Similar assumptions are also made in other approaches. For
example, the ALEXI model (Anderson et al. 1997) relies on
the boundary layer model of McNaughton and Spriggs (1986),
and thus also implicitly assumes zero advection.

The approach described in this study can be used to study
the role of irrigation on mitigating agricultural droughts in the
historical record, particularly the presatellite era. There are
surprisingly few alternative methods available for estimating
EF during the presatellite era. Long-term records of EF from
eddy covariance flux towers only date back to the 1990s. Esti-
mates of EF using the Bowen ratio method require observations
of air temperature and humidity at two different heights, yet
standard weather stations typically only measure these quantities
at one height (typically around 2 m above the ground). Ap-
proaches based on the complementary relationship (e.g., Kahler
and Brutsaert 2006; Brutsaert 2015; Aminzadeh et al. 2016)

provide an estimate of evapotranspiration, rather than EF.
Converting the predicted evapotranspiration flux to EF would
require observations of surface net radiation, which are also
not widely available during the presatellite era. Thus, our ap-
proach fills an important methodological gap in the literature.
We speculate that meteorological drought indices likely pro-
vide a distorted record of the relative severity of different agri-
cultural droughts in the past, particularly after the advent of
widespread irrigation following the Dust Bowl, and plan to
use EFSFE to reexamine the historical drought record.
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Data availability statement. The gridded PDSI data (Dai
et al. 2004) are available at https://climatedataguide.ucar.edu/
climate-data/palmer-drought-severity-index-pdsi. HadISD data
(Dunn et al. 2016) are available at https://www.metoffice.gov.
uk/hadobs/hadisd/. ERA5 data are available at the ECMWF
webpage. USDA census data can be downloaded from https://
www.nass.usda.gov/AgCensus/index.php.
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Table S1. Table of irrigated sites in HadISD data. Format of time: MM/DD/YY.
site latitude longitude county state start time end time

ID 44.021 -117.013 Malheur OR 01/01/48 present

43.567 -116.241 Boise ID 01/01/31 present

43.05 -115.867 Elmore ID 01/01/32 3/27/19

42.483 -114.483 Twin Falls ID 01/01/73 present

42.542 -113.766 Cassia ID 1/01/48 present

42.92 -112.571 Power ID 01/01/43 present

43.519 -112.064 Bonneville ID 01/01/48 present

43.832 -111.808 Madison ID 01/02/99 present

NE 40.450 -99.333 Phelps NE 01/01/73 present

40.717 -99.000 Buffalo NE 03/12/43 present

40.605 -98.428 Adams NE 01/01/73 present

40.961 -98.314 Hall NE 03/01/44 present

41.986 -97.435 Madison NE 01/01/48 present

41.450 -97.333 Platte NE 01/01/73 present

40.300 -96.750 Gage NE 01/01/73 present

40.851 -96.748 Lancaster NE 10/01/42 present

MS 35.056 -89.987 Shelby TN 10/01/46 present

35.967 -89.950 Mississippi AR 09/01/42 present

35.350 -89.867 Shelby TN 03/01/45 12/31/04

34.180 -91.934 Jefferson AR 01/01/73 present

36.125 -90.925 Lawrence AR 10/10/42 present

35.833 -90.633 Craighead AR 01/01/73 present

36.767 -90.467 Butler MO 08/20/76 12/31/05

33.483 -90.985 Washington MS 01/20/42 present

KT 36.017 -102.550 Hartley TX 11/01/42 present

33.600 -102.050 Lubbock TX 03/01/42 05/01/97

33.666 -101.823 Lubbock TX 08/10/45 present

35.230 -101.704 Potter TX 03/01/43 present

37.033 -100.95S Seward KS 06/18/43 present

37.927 -100.725 Finney KS 02/01/43 present

37.769 -99.968 Ford KS 04/19/43 present
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Table S2. Table of nonirrigated sites in HadISD data. Format of time: MM/DD/YY. * Cibola,
NM used to be a part of Valenncia, NM. For consistency, we eliminated this county for the total
irrigated area in USDA census.

site latitude longitude county state start time end time

SD 46.783 -100.757 Burleigh ND 07/01/36 present

45.547 -100.408 Walworth SD 01/01/73 present

44.381 -100.286 Hughes SD 03/01/44 present

43.800 -99.317 Brule SD 03/10/78 present

46.926 -98.669 Stutsman SD 12/01/48 present

45.443 -98.413 Brown SD 01/01/48 present

44.398 -98.223 Beadle SD 01/01/40 present

43.775 -98.039 Davison SD 01/01/73 present

MO 37.152 -94.495 Jasper MO 01/01/48 present

36.917 -94.017 Barry MO 01/01/73 present

37.240 -93.390 Greene MO 01/01/48 present

38.717 -93.550 Buchanan MO 12/01/42 present

38.817 -92.218 Boone MO 11/01/69 present

37.750 -92.150 Pulaski MO 03/20/63 present

38.583 -92.150 Cole MO 11/29/73 present

38.131 -91.768 Carter MO 01/01/48 present

NM 37.300 -108.633 Montezuma CO 01/01/73 present

36.744 -108.229 San Juan NM 01/01/49 present

35.514 -108.794 McKinley NM 01/01/73 present

35.165 -107.902 Cibola* NM 01/01/48 present

35.879 -106.269 Los Alamos NM 02/28/80 present

35.617 -106.089 Santa Fe NM 08/01/46 present

35.654 -105.142 San Miguel NM 08/01/46 present

KY 35.951 -85.081 Cumberland TN 05/01/54 present

38.041 -84.606 Fayette KY 01/01/48 present

37.087 -84.077 Laurel KY 10/11/54 present

35.818 -83.986 Blount TN 01/01/48 present

37.591 -83.314 Breathitt KY 01/02/73 present

35.432 -82.538 Bumcombe NC 08/01/43 present

36.473 -82.404 Sullivan TN 01/01/48 present
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Fig S1. Sample size of data discussed in section 3b of the main text when using different PDSI
thresholds to define a drought: the left panel shows the sample size (𝑛) at irrigated sites, and the
right panel shows 𝑛 at nonirrigated sites. Solid lines indicate the period of 1970-1982, and dashed
lines are for 2000-2012, with colors indicating different sites.
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Fig S2. The original distribution of EFSFE (panel (a)) and EFERA5 (panel (c)) at MO when PDSI
is negative (Figs. 7 (d) and (i) of the main text). Panels (b) and (d) respectively show the
corresponding results with the two sites along the lower Missouri river (in Boone county and Cole
county, MO) removed. Panels with an asterisk (*) on the upper left indicate results with 2000-12
greater than 1970-82 with statistical significance. This figure shows that after the removal of two
sites closest to the river, changes in EFs at MO are consistent with our hypothesis that the trends in
EFSFE and EFERA5 are consistent when PDSI is negative.
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