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Widespread outdoor exposure to
uncompensable heat stress with warming

Check for updates

Yuanchao Fan 1,2 & Kaighin A. McColl 2,3

Previous studies projected an increasing risk of uncompensable heat stress indoors in a warming
climate. However, little is known about the timing and extent of this risk for those engaged in essential
outdoor activities, such as water collection and farming. Here, we employ a physically-based human
energybalancemodel,which considers radiative,wind, and keyphysiological effects, to project global
risk of uncompensable heat stress outdoors using bias-corrected climatemodel outputs. Focusing on
farmers (approximately 850 million people), our model shows that an ensemble median 2.8% (15%)
would be subject to several days of uncompensable heat stress yearly at 2 (4) °C of warming relative to
preindustrial. Focusing on peoplewhomust walk outside to access drinkingwater (approximately 700
million people), 3.4% (23%)would be impacted at 2 (4) °C of warming. Outdoor work would need to be
completed at night or in the early morning during these events.

Global warming is expected to amplify heatwaves and associated heat stress
in a variety of differentways1,2.Heat stress occurswhen the combined effects
of temperature, humidity and other climate variables overwhelm the body’s
thermoregulation3,4. Recent studies highlight the role of humidity in heat
stress and associated impacts on humanmortality andmorbidity and labor
productivity under multiple warming scenarios5–9. A particular concern is
the occurrence of ‘uncompensableheat stress’, inwhich thebody is unable to
achieve sufficient heat dissipation (via sensible, latent, or radiative path-
ways) to maintain stable core temperatures10–12.

A growing number of empirical relationships5,10,11,13,14 and diagnostic
indices (e.g., wet-bulb globe temperature (WBGT)15–18) are used to link
observed climatic conditions or index values from instruments to epide-
miologic data on heat illness3,4. However, empiricalmethods like theWBGT
inadequately mimic the human body’s response to heat15,19, particularly at
higher heat stress levels20,21 and in conditions that differ from those inwhich
they were calibrated4. Sherwood22 noted that “empirical measures like
WBGT implicitly involve physiological adaptations, so applying them to
significantly warmer global climates would require extrapolation way out-
side their range of calibration, potentially invalidating them.” Several
studies11,12 have also cautioned that empirical thresholds determined from a
limited number of subjects may not be representative of other regional or
global populations, due to the influence of acclimatization.

These limitations of empirical methodsmotivate the use of physically-
based models. In a pioneering study, Sherwood and Huber1 used simple
thermodynamics to propose an “adaptability limit”—that is, the upper
tolerance limit of heat stress for a fit, unclothed, fully-hydrated, acclimated,
resting person completely sheltered from solar radiation and subjected to

gale-force winds—of 35 °C for wet-bulb temperature (TW). This limit has
since been widely adopted6–8,23, but its simplicity comes with important
limitations10,12,24. These limitations include ignoring biological limits on
sweating rates10,25; ignoring limits to evaporative efficiencydue tofinitewind
speeds19; ignoring metabolic heat generated by the body24; and ignoring the
heat load from solar and longwave radiation24,26–28. Recent studies have
demonstrated uncompensable heat stress occurring atTWmuch lower than
35 °C due to effects of increased metabolic heat24, finite wind speeds10,24 and
limited sweating capacity10–12. However, these studies all assumed complete
darkness (what they called “shade” corresponded to zero solar radiation)
whether indoors or outdoors. Although humans can partially avoid direct
sunlight by sheltering indoors or in the shade, a proportion of solar radia-
tion, in the form of diffuse radiation and transmitted and reflected direct
radiation, will inevitably reach indoors (~20–80% transmitted through a
glass window)27 or pass through shading objects (~30–70% under plastic
shading nets29,30 and 5–27% under tree canopies in the summer31,32) as long
as they are not in complete darkness. A recent study33 examined an outdoor
“sun” scenario using approximated midday radiation under partly cloudy
conditions, assuming radiant temperature was always 15 °C higher than air
temperature (Ta). This assumption ignores diurnal weather variability and
the plasticity in human behavioral responses to heat (seemore details in the
“Discussion”). To accurately assess the impact of solar radiation on
uncompensable heat stress, it is crucial to use dynamic radiation inputs and
constrain uncertainties in radiation exposure due to human behavioral
modifications. One approach is to calculate the diurnally varying and
daytime average impact of heat stress on specific subpopulations whomust
conduct essential daily activities outdoors and cannot seek shelter

1ShenzhenKeyLaboratoryof Ecological Remediation andCarbonSequestration, Institute of Environment andEcology, TsinghuaShenzhen InternationalGraduate
School, Tsinghua University, Shenzhen, China. 2Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA. 3School of Engineering
and Applied Sciences, Harvard University, Cambridge, MA, USA. e-mail: yuanchao.fan@sz.tsinghua.edu.cn; kmccoll@seas.harvard.edu

Communications Earth & Environment |           (2024) 5:762 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-024-01930-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-024-01930-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-024-01930-6&domain=pdf
http://orcid.org/0000-0002-3462-1820
http://orcid.org/0000-0002-3462-1820
http://orcid.org/0000-0002-3462-1820
http://orcid.org/0000-0002-3462-1820
http://orcid.org/0000-0002-3462-1820
http://orcid.org/0000-0001-9201-6760
http://orcid.org/0000-0001-9201-6760
http://orcid.org/0000-0001-9201-6760
http://orcid.org/0000-0001-9201-6760
http://orcid.org/0000-0001-9201-6760
mailto:yuanchao.fan@sz.tsinghua.edu.cn
mailto:kmccoll@seas.harvard.edu
www.nature.com/commsenv


indefinitely: for example, there are ~850 million agricultural workers who
work longhoursunder direct sunlight34,35, andmore than700millionpeople
in low-income and middle-income countries who must walk more than
30min outside per day just to access water36,37. What effect does the inclu-
sion of varying radiation have on the prevalence of uncompensable heat
stress among these susceptible populations? And how does their inclusion
impact heat stress projections this century? The urgency of addressing these
research questions is clear, as researchers have advocated for improved
measures of heat stress from direct sunlight and the optimization of public
shade infrastructure as a strategy to adapt to hotter urban climates38.

To answer these questions, we take a physically-based energy balance
approach, informed by energy balance modeling in the fields of
climatology39 and thermophysiology4 to calculate heat exchange between a
person and their environment (Fig. 1). The rate of heat storage in the body,
denoted asG in Eq. (1), is used to identify uncompensable heat stress.When
G is positive (G > 0), it indicates a net heat gain (uncompensable heat) that
results in an increase in the body’s core temperature. Noting the current gap
between the climate and health research communities and limited inte-
gration of human heat stress models into climate projections33,40 due to
model complexity and computational costs4, our model (Eqs. (1)–(8) par-
simoniously extends the implicit model of Sherwood andHuber1 (Eq. (14))
to include the effects of radiation, wind, and basic human physiology in
addition to temperature and humidity while remaining much simpler than
existing human thermophysiological models33,41–43 (Fig. 1 and the “Meth-
ods” section).

We validate themodel against the PSU-HEAT experimental data from
Wolf et al.25 in a similar way to the validation conducted in recent studies33,44

(see the “Methods” subsection “Model validation and cross-comparison”).
Figure 2 demonstrates that ourmodel (Eqs. (1)–(8) is accurate in predicting
the uncompensable heat stress threshold (G = 0) for multiple human sub-
jects involved in the MinAct and LightAmb trials with different levels of
metabolic heat, across a range of critical conditions represented by twelve
combinationsof air temperature and vaporpressure. Themodel is thenused
to calculateG using bias- and variance-corrected three-hourly near-surface
climate variables of 12 climatemodels for the 21st century from theCoupled
Model Intercomparison Project Phase 6 (CMIP6)45 (see Supplementary
Methods 1 and 3 for details on model data and bias correction). We use
daytimemeanG (Gday) to estimate the impact of uncompensable heat stress
(Gday > 0Wm−2), focusing on the subpopulations of 850 million rural
agricultural workers35 and 700 million people who must walk outside to
access drinking water37 (see Supplementary Method 2 “Population

distribution data”). A grid cell is considered impacted by uncompensable
heat stress when its Gday exceeds zero for at least one day per year. We
conduct awarming of emergence (WoE) analysis at each grid cell (similar to
the temperature of emergence concept2) to estimate the future risk of

Latent heat of
evaporation (λE )

Metabolic heat (M )

Latent heat of
evaporation (λE ) Sensible heat (H )

Solar radiation (Rs)Outgoing 
longwave (Lout)

Incoming
longwave
radiation (Lin)

Eq. 10 or 14 Eqs. 1-8

Sensible heat (H )

a b

Fig. 1 | Schematic illustrating the human energy balance model with different
assumptions. a Assumptions embedded in previous studies using moist heat stress
metrics that focus on latent (λE) and sensible (H) heat fluxes (neglecting all radiation
and metabolic activity). b Assumptions in this study based on an intermediate

complexity human energy balance model considering λE, H, and additionally solar
radiation (Rs), incoming (Lin) and outgoing (Lout) longwave radiation, andmetabolic
heat (M) for a resting person (see the “Methods” section).
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Fig. 2 | Model validation using chamber experimental data. The solid points and
triangles represent two sets of experiments from the PSU-HEAT project25: MinAct
(mean M = 83Wm−2) and LightAmb (mean M = 133Wm−2), respectively. Each
experiment includes six trials with either (1) constant Ta and progressively
increasing vapor pressure (ea) or (2) constant ea and increasing Ta until the core
temperature (Tc) inflection point was observed. These twelve combinations of cri-
ticalTa and ea and two levels ofmetabolic heat (83 and 133Wm−2) are used as inputs
to our energy balance model ((Eqs. (1)–(8), model parameters are summarized in
Supplementary Table 1), which accurately predicts G around zero for all experi-
ments. The solid lines denote the G = 0 isopleths, indicating the Tc inflection point
and the uncompensable heat stress threshold from our model for each level ofM in
the MinAct and LightAmb experiments. Each point or triangle symbol represents
the mean of multiple human subjects, and the error bar represents the standard
deviation (vertical bars for fixed Ta trials, horizontal bars for fixed ea trials). Dashed
contours are the isopleths of wet-bulb temperature. See Supplementary Fig. 9 for
relative humidity (RH) on the Y-axis. More details are provided in the “Methods”
subsection “Model validation and cross-comparison”.
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uncompensable heat stress. We also analyze the frequency and duration of
uncompensable heat stress events using both Gday and 3-h G. We consider
outdoor sun and shade scenarioswith varying degrees of radiation exposure
relevant to people collecting water or working on farms (see the “Methods”
subsection “Heat stress scenario”).We also consider additional scenarios in
which metabolic heat and sweating limits are varied (dark, dark*, dark**,
Table 1). These scenarios correspond to recent studies that have built on
thermophysiological theories but excluded solar radiation1,10–12,24. Finally,we
normalize the projected impacts by global warming amounts46 (see the
“Methods” subsection “Normalizing by global warming amount”).

Results
A physically-based measure of heat stress, G
Comparison ofG underfive scenarios with the conventionalmetricTWand
its equivalent energy flux (GTW; Eq. (10) or (14) in the “Methods” section)
reveals that the TW metric with the 35 °C threshold systematically under-
estimates the future risk of uncompensable heat stress (Fig. 3). This is
consistent with recent studies10,33 that have identified critical wet-bulb
temperature thresholds considerably lower than 35 °C. We quantify the
individual effects of finite wind speed, metabolic heat, sweating limits, and
solar radiation on body energy balance that are ignored by the TW metric.
The effect of finite wind speed is illustrated by the difference between Gday

(dark**) and TW
day (GTW

day; the superscript ‘day’ indicates daytime mean)
(Fig. 3 and Supplementary Fig. 10f). A large proportion of the under-
estimation of body heat storage rate by the TW metric is due to its
assumption of gale-force winds1, whereas our data show that heat stress is
often associated with finite wind speeds (Supplementary Fig. 22d). The
effect of increasedmetabolic heat required for outdoor activities in the dark*

scenario, which is similar to ref. 24, results in a constant increase relative to
the dark** scenario with resting metabolic heat (Supplementary Fig. 10e).
The effect of imposing a limit to sweating capacity (λEmax = 500Wm−2, Eq.
(8)) onG increaseswith increasedwarming (Fig. 3). Supplementary Fig. 10d
shows that the heat gains due to the sweating limit are most pronounced in
NorthernAfrica, the PersianGulf, andCentral Australia where wind speeds
are high and relative humidities are low during the hottest days (Supple-
mentary Figs. 19–21),which result in an extremely high free evaporativeflux
(λEo, Eq. (7)) exceeding λEmax. However, among the hottest 1% of land grid
cells ranked by annual maximum Gday (dark), many are located in tropical
humid regions (Supplementary Fig. 10a) where wind speeds are low and
relative humidities are high (Supplementary Fig. 21) and λEo rarely exceeds
λEmax (Supplementary Fig. 10d); thus, the contribution of heat gains due to
limited sweating to the overall heat stress in the dark scenario is relatively
small (Fig. 3). This is consistent with another study33 that showed pro-
nounced effects of sweating limits in hot and dry conditions but minimal
effects in high humidities.

When the effects of solar radiation are included, the average intensity of
heat stress (annual maximum Gday) under the sun (shade) scenario for the
hottest 1% of land grid cells is roughly 155 (80)Wm−2, or 2(1) °C
TW-equivalent, higher than the estimates under the dark scenario (Fig. 3; a
nonlinear conversion between the energy flux on the left Y-axis and TW on
the rightY-axis is obtainedusingEq. (10) orEq. (14)).Weconservativelyuse
daytime averaged, sun-angle corrected solar radiation (Eq. (3) for the sun

scenario) to accommodate variability in radiation exposure during outdoor
activities, which results in much lower radiative heat load (mostly
<150Wm−2, Supplementary Fig. 10c) than using daily maximum or mid-
day radiation under the same weather condition (Supplementary Fig. 16d).
Nevertheless, the daytime average radiation, under full sun or shade, sub-
stantially increases the prevalence, frequency, and duration of uncompen-
sable heat stress (see next sections). Our model demonstrates why even
relatively low daytime average radiation has a strong effect. As wind speeds
decline, there is a nonlinear decrease in the convective heat transfer coef-
ficient (hc) and evaporative coolingflux (λE, Eq. (7)), therebymagnifying the
risk of G exceeding zero when Rn is positive (Eqs. (1) and (2). Thus, when
combined with the effects of low wind speeds in the tropics, the absorbed
radiation plays a major role in exceeding the uncompensable heat stress
threshold in the hottest parts of the world (Fig. 3).

Emergence of uncompensable heat stress
Our WoE analysis shows that uncompensable heat stress (at least one day
per yearwithGday > 0Wm−2) is projected to emerge in some limited areas in

Table 1 | Modeling scenarios used in this study

Scenario Radiation (Rin+ Lin, Wm−2) Metabolic heat (M, Wm−2) Maximum sweat rate (λEmax, Wm−2)

Sun Modeled Lin and sun scenario for Rin (Eq. (3)) 176 (moderate work) 500 (400) for acclimated (non-acclimated) persons

Shade Modeled Lin and shade scenario for Rin (Eq. (3)) 176 500 (400)

Dark Modeled Lin (Rin = 0) 176 500 (400)

Dark* Modeled Lin (Rin = 0) 176 No limit

Dark** Modeled Lin (Rin = 0) 59 (complete rest) No limit

The outdoor sun and shade scenarios are the key contribution of this study, while the dark scenarios are used to compare with prior studies (see the “Discussion” section). In all scenarios, modeled wind
speed (U) is used.
Rin and Lin denote input shortwave and longwave radiation, respectively. See the “Methods” section and Supplementary Table 1 for definitions of all terms.
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∆Diffuse radiation∆Direct radiation
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Fig. 3 | Area-weighted average of annual maximumGday andTW
day (GTW

day) of the
hottest 1% of land grid cells as a function of global warming amounts. For wet-
bulb temperature, the left Y-axis shows the value of GTW

day (blue dot-dashed line)
corresponding to each value of TW

day on the right Y-axis; slight differences are due to
the temporal and spatial variations in wind speed considered by GTW

day but not
considered by the TW

day metric (instantaneous wind speeds concurrent with TW
day

are used to compute GTW
day using Eq. (14)). The difference between TW

day (GTW
day)

and Gday (dark**) indicates the underestimation of body heat storage rate by the TW
metric mainly due to its assumption of gale-force winds. The other differences, Gday

(dark*)−Gday (dark**), Gday (dark*)−Gday (dark), Gday (shade)−Gday (dark), and Gday

(sun)−Gday (shade) indicate the effect of increased metabolic heat for outdoor
activities, the effect of imposing the sweating limit, the effect of diffuse radiation
under shade, and the effect of additional direct beam radiation, respectively. Details
on the sun, shade, and three dark scenarios are summarized in Table 1. All solid lines
denote the ensemblemedian, and the shaded areas indicate the 25th–75th percentile
interval across 12 CMIP6 models.
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the Amazon, Northern Africa, and the Persian Gulf when global warming
surpasses 2.5 °C and approaches 4 °C under the dark scenario (Fig. 4a).
When considering diffuse solar radiation under shade (Fig. 4b and Sup-
plementary Fig. 17 for individual models), the projected uncompensable
heat stress emerges earlier in the above locations (<2 °C) and expands to
more areas in the Sahel, Northern India/Pakistan, Southeast Asia, and
Australia with more than 2–3 °C of warming. When the effects of full solar
radiation are included, the risk of uncompensable heat stress is projected to
expand to more regions of South America, Northern and Central Africa,
India, Southeast Asia, Australia, and the Southern United States, at or after
1.5 °C of warming (Fig. 4c and Supplementary Fig. 18 for individual
models). Regions such as Northern Africa, the Arabian Peninsula, and
Central Australia are subject to the strongest solar radiation effects (Sup-
plementary Fig. 10c), resulting in many of these regions already experien-
cing projected uncompensable heat (WoE <1 °C) under the sun scenario.
But, the Sahara region and Central Australia have a very limited population
engaged inwater collection or farming (Supplementary Fig. 2), and thus the
impact on outdoor activities is limited in these regions. Regions across

tropical humid areas are subject to slightly weaker solar radiation effects but
overall high Gday (Supplementary Fig. 10b, c, f) due to low wind speeds in
these regions (Supplementary Fig. 19h). The tropical regions also have a
larger fraction of populations engaged in outdoor activities such as drinking
water collection or farming (see Supplementary Fig. 2), making them
especially vulnerable toadditional heat stress fromsolar radiation (discussed
in further detail in the next section).

Impact of uncompensable heat on outdoor activities
While the most similar previous studies have largely ignored the effects of
radiation10–12,24,47, those engaged in outdoor water collection or farming do
not necessarily have the luxury of sheltering indoors for extended periods.
What is the impact of solar radiation on uncompensable heat stress in these
communities? Fig. 5a, c shows that under the sun (shade) scenario, around
480 (100) million hectares (Mha), or 7% (1.5%) of the land area masked by
water access data or agricultural population data (Supplementary Fig. 2), is
projected to be at risk of uncompensable heat stress (Gday > 0Wm−2) at 2 °C
of warming. The impacted areas increase rapidly with higher global

Fig. 4 | Warming of emergence (WoE) for
uncompensable heat stress.WoE is defined as the
lowest global warming amount (relative to
1850–1900) for which uncompensable heat stress
emerges (Gday > 0Wm−2) at each grid cell according
to the CMIP6 ensemble median Gday (see
the “Methods” subsection “Normalizing by global
warming amount”). WoE is estimated for the dark
(a), shade (b), and sun (c) scenarios (defined in
Table 1). Uncolored land areas are where fewer than
six of the twelve models project a WoE <4 °C by
2099.WoEmaps for individual models are shown in
Supplementary Figs. 17 and 18. The background
grayscale population map in a is for illustration
purposes: by overlapping the WoE with the dis-
tribution of specific populations engaged in outdoor
activities, such as those who perform agricultural
work, we can determine the impact of uncompen-
sable heat stress on these populations (see Fig. 5 and
color population maps in Supplementary Fig. 2).
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warming amounts and increase at a higher rate with more radiation
exposure. In comparison, the projected areal impact assuming zero solar
radiation (dark) remainsmuch lower across different levels ofwarming.The
projected impacted population engaged in water collection (Fig. 5b)
increases from 24.1 to 163.8 million (3.4–23%) under the sun scenario,
about 40 times that projectedunder the dark scenario (from0 to 4million or
0–0.6%) when global warming increases from 2 to 4 °C. The projected
impacted population engaged in farming (Fig. 5d) also increases rapidly
from23.9 to 127.4million (2.8–15%) under the sun scenario, about 25 times
that projectedunder thedark scenario (from0 to5millionor 0–0.6%),when
global warming increases from 2 to 4 °C.

The presence of shade mitigates the effect of solar radiation on
outdoor activities but does not eliminate it. In average shade conditions
(orange lines in Fig. 5), the projected population engaged in water col-
lection or farming at risk of uncompensable heat stress reduces to about
one-fourth of that projected under the sun scenario but is still more than
six times higher than under the dark scenario. We also consider a range
of radiation exposure from ~16% of total solar radiation under dense tree
canopies in the summer31 to ~50% under plastic shading nets29,30 (see the
“Methods” subsection “Heat stress scenario”). The corresponding pro-
jected impacted population who collect water outside ranges from 11 to

99 million, consistently higher than the 4 million under the dark sce-
nario, at 4 °C warming. The same is true for agricultural workers
on farms.

The prevalence and frequency of uncompensable heat are both
projected to increase with radiation exposure and further warming
(Fig. 6, Supplementary Fig. 13). The area-weighted mean annual number
of days with Gday > 0Wm−2 is projected to be about 8 (4) days for
populations engaged in water collection or farming under the sun (shade)
scenario at 2 °C warming (Fig. 6). At 4 °C warming, it increases to about
14 (10) days for the sun (shade) scenario, about 3 (2) times that predicted
under the dark scenario. The annual cumulative hours with G > 0
are even longer and impact more regions if using 3-h values (Supple-
mentary Fig. 14) instead of daytime means (Gday). In some hotspo-
t regions such as the Sahel, Amazon, the Persian Gulf, and Northern
India/Pakistan, outdoor workers from the two subpopulations may
experience a cumulative total of more than two weeks or 168 h of
uncompensable heat stress per year at 4 °C warming (Supplementary
Figs. 13 and 14).

On days in which Gday > 0Wm−2, outdoor activities (including water
collection and farming) will need to occur at night or in the very early
morning, even when shaded. Figure 7 shows that across grid cells and days

Fig. 5 | Projected exposure to uncompensable heat stress (Gday > 0Wm−2) for
subpopulations engaged in outdoorwater collection and farming. Land area (a, c)
and population (b, d) at risk, shown separately for those engaged in water collection
(a, b) and farming (c, d) under sun, shade, and dark scenarios. Percentage estimates
are restricted to the specified subpopulation: for example, in a, the “Percent area (%)”
refers to the percent of the land area currently inhabited by people who must walk
outside to collect water that is projected to experience uncompensable heat stress.
Spatially resolved water access data and agricultural population data are described in
Supplementary Method 2 and presented in Supplementary Fig. 2. Lines denote the

ensemblemedian, and the shaded areas indicate the 25th–75th percentile interval. In
the shade scenario, the orange line indicates the average radiation exposure under
shade and the error bars indicate the uncertainty (±50% of Rin; Eq. (3) for the shade
scenario) under various shading objects. Uncompensable heat stress impacts are
determined using the average data of a 10-year periodmatching each globalwarming
amount most closely (tolerance of ±0.05 °C). There are only ten models that provide
10-year data corresponding to the warming amount of 4 °C, which contributes to a
slight drop in the ensemble median at 4 °C.
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inwhichGday > 0Wm−2, themean 3-h value ofG is projected to exceed zero
during most daytime hours (9:00–18:00) but stay below zero in the early
morning (6:00–9:00) and during the night (18:00–6:00) under the sun
scenario. The 3-hG is projected to exceed zero at slightly later hours and at
higher warming levels under the shade scenario compared to the sun sce-
nario. In either case, the extent (Fig. 4), frequency (Fig. 6), and duration
(Fig. 7) of uncompensable heat in the daytime are all projected to increase
with increased warming. The 3-hourly G is also projected to exceed zero at

later hours, but in very limited numbers of grid cells and days, under the
dark scenario at 3-4 °C warming.

The above results focus onfit, well-acclimated peoplewith amaximum
sweat capacity of 500Wm−2 (ref. 48). For non-acclimated people whose
maximum sweat capacity reduces to 400Wm−2 (ref. 48), the projected risk
of uncompensable heat stress among those engaged in water collection or
farming is about twice as large compared to those who are acclimated
(Supplementary Fig. 12).

Fig. 7 | Mean diel cycle ofG for the subpopulation
engaged in outdoor water collection. Mean 3-h G
under 1–4 °C (a–d, respectively) of global warming.
Statistics for sun, shade, and dark scenarios across
warming levels are based on a common set of grid
cells (see the “Methods” subsection “Normalizing by
global warming amount”). The hour of day is the
local time at each grid cell according to the solar
zenith angle and 12 indicates local solar noon. All
solid lines denote the ensemble median, and the
shaded areas indicate the 25th–75th percentile
interval across 12 CMIP6 models. The equivalent
plot for the subpopulation engaged in farming is
similar and shown in Supplementary Fig. 11.

G
G

G
G

Fig. 6 | Projected occurrence frequency of
uncompensable heat stress for subpopulations
engaged in outdoor water collection and farming.
Area-weighted mean annual number of days with
Gday > 0Wm−2 for those engaged in water collection
(a) and farming (b) under sun, shade, and dark
scenarios. Lines denote the ensemble median and
the shaded areas indicate the 25th–75th percentile
interval. The statistics consider only those grid cells
where people must spend more than 30 min per day
outside to collect drinking water (a) or where agri-
cultural workers live in rural areas (b). A minimum
of three grid cells with ensemble median Gday > 0
under the dark scenario are used to compute the
area-weighted mean annual number of days.

G G
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Discussion
Our study underscores the importance of including radiative heat loads in
heat stress projections. Our intermediate-complexity physically based
human energy balance model with parsimonious physiological parameters
offers a climate model-friendly approach for assessing global risks of
uncompensable heat stress under any climate regime and radiative condi-
tion. The model proves accurate in predicting the body core temperature
inflection points under uncompensable heat conditions in laboratory heat
stress experiments (Fig. 2). Using bias-corrected climate data, our model
consistently projects higher intensity (Fig. 3), frequency (Fig. 6), duration
(Fig. 7), and land area and specific population impacts (Fig. 5) of uncom-
pensable heat stress concerning outdoor activities compared to that mea-
sured without radiative effects; such risks are projected to emerge widely in
hot-dry and hot-humid regions with increasing warming levels (Fig. 4).We
also decompose the contributions of climatic (temperature, humidity,
radiation,wind speed) andphysiological (metabolic heat, sweating capacity)
variables to the body’s energy balance, and show strong radiative effects on
uncompensable heat stress co-regulated by evaporative efficiency and
sweating capacity.

A raft of recent studies10,24,25 has demonstrated that the conventional
adaptability threshold of 35 °C TW insufficiently captures the effect of
human thermophysiological limitations on the occurrence of uncompen-
sable heat stress. This motivated the adoption of empirically determined
uncompensable heat stress thresholds11,12,47 or the application of human
energy balance models with physiological considerations42,49 in recent
studies24,33. However, most of these studies unrealistically assume zero solar
radiation and constant wind speeds for outdoor conditions11,12,24,47. A few
studies that attempted to model solar radiation effects on uncompensable
heat stress relied on oversimplified radiation inputs17,33. For example, the
partitional calorimetrymodel49 requires mean radiant temperature (Tr) as a
key input to assess radiative effects, but Tr is not an output variable from
global climate models and is not commonly measured by weather stations.
Tr itself requires detailed modeling of radiative fluxes absorbed by a human
body50. Thus, Vanos et al.33 approximated midday radiant temperature, Tr,
by assuming it was always 15 °C higher than Ta under partly cloudy con-
ditions (blue shaded region in Supplementary Fig. 16c) for their “sun”
scenario. They ignored the diurnal cycle and tight correlation between
radiation and variables such as temperature51 and atmospheric
clearness (Kt), which substantially underestimates the solar radiation heat
load on the hottest (most often clear) days (orange shaded region in Sup-
plementary Fig. 16b; more details below). Additionally, they assumed an
arbitrary wind speed of 1m s−1 for a moving person, which fails to capture
the crucial nonlinear effect of wind speed on the body’s energy balance.

Our study fills this gap by explicitly modeling the diurnal cycle of
radiation absorbed by people outdoors under various weather conditions
using sun-angle and view-angle corrected downwelling and upwelling
radiative fluxes (Eqs. (3) and (4)). Our analysis of the ERA5 reanalysis data
shows thatmore than 75% of warmweather (Ta > 25 °C) has relatively clear
sky conditions (Kt > 0.5, Supplementary Fig. 16a) andmore than 66%of the
hottest 1% heat stress events (whenGday (dark) exceeds the 99th percentile)
occur under clear and sunny conditions (Kt > 0.7, Supplementary Fig. 16b),
which implies a strong radiative heat load (Supplementary Fig. 16d) and
impact on outdoor activities, even when averaged over daytime (Figs. 4–6).
Even under cloudy conditions (Kt < 0.25, Supplementary Fig. 16d), the heat
load from solar radiation (mostly diffuse) remains substantial, with values
(~80Wm−2) comparable to those attained while sheltering in the shade,
which we have shown still substantially contribute to uncompensable heat
stress (Figs. 4–7). Furthermore, the efficiency of heat dissipation via
sweating can be lowerdue to lower convective heat transferwith diminished
wind in confined spaces or under shading objects28, which, in turn, can
increase the sensitivity of the body’s energy budget to radiation and meta-
bolic heat (Supplementary Fig. 6).

Our study specifically focuses on subpopulations engaged in essential
outdoor activities, with especially limited capacity for sheltering indoors for
extended periods without compromising labor productivity and livelihood.

By focusing on two specific subpopulations, each representing nearly 1
billion people, our results imply that unavoidable outdoor activities,
including drinking water collection and farming, may increasingly have to
become nocturnal or limited to the very early morning for millions of
people. In many cases, such as in urban slums, water demand is already so
high that reducing the accessible window will likely preclude some from
accessing it at all52,53. Farming usually requires long hours of outdoor labor
and is closely tied to seasonal growing cycles and market demand34,54; these
constraints appear largely incompatible with timing constraints imposed by
our heat stress projections (Figs. 6and 7, Supplementary Fig. 14). Even if
direct health impacts can be avoided by major behavioral changes, those
changes will incur major social, economic and political consequences that
are, themselves, fundamental aspects of heat stress impacts34,54–56.

Many studies used daily maximum heat stress metrics2,6,11,23,24,57 and
some considered rarer extremes (such as 1-in-30-year events2,6,23), which are
not directly comparable to ourWoE and impact analysis based on daytime
mean values and annual events. Among recent studies that have similar
thermophysiological considerations to ours11,33,47, Vecellio et al.47 used 3-h
data from twelve CMIP6 models comparable to ours. They applied
empirical critical TW thresholds10 determined from experimental
chambers25 to climate data assuming zero solar radiation exposure and
minimal wind speed. An indoor scenario simulated by our model with the
same assumptions finds very similar global distributions of annual cumu-
lative hours of uncompensable heat stress (G > 0) at different warming
levels, especially for the hotspot regions of Northern India and Pakistan, the
Persian Gulf, Eastern China, Northern Africa, Amazon and Northern
Australia (Supplementary Fig. 15e–h, comparable to Fig. 1a–d in ref. 47).
However, as noted by Powis et al.11 who used the same critical TW thresh-
olds, these thresholdsweremost representative formid-latitude populations
from which participants in the trials were selected25, which probably
explains some remaining differences from the projection of our physically
based model. These empirical thresholds assumed higher than resting
metabolic heat (meanM = 83Wm−2) for subjects doing light activity in the
experimental chamber25. Given the close correspondence between our dark
scenario and others11,47 (Table 1), we also take the opportunity to extend our
results to show uncompensable heat stress during complete rest. This
represents the most conservative scenario in terms of metabolic heat gen-
eration (M = 59Wm−2) and is particularly relevant for older adults, as
recently investigated58. We find that the global average annual hours of
uncompensable heat stress under the resting scenario are approximately
one-fourth (one-third) of those projected under the light activity scenario at
2 °C (4 °C) of warming, when all other assumptions are identical (Supple-
mentary Fig. 15a–d). Although the difference in M is only 24Wm−2, the
body’s energy balance (or critical TW threshold) is particularly sensitive to
extraheat in indoor conditionswithnowind.This is also the casewhenextra
solar radiation (sun or shade) is considered togetherwithfinitewind speeds,
which substantially increase the duration (Supplementary Fig. 14) and
impact (Figs. 4–7) of uncompensable heat stress compared to the dark
scenarios. The interplay between radiative or metabolic heat load and the
convective heat transfer coefficient hc determined by wind speed is clearly
illustrated by our model, which should be considered in future assessments
of heat stress impacts. Assuming fixed wind speeds for outdoor activities, as
in prior studies24,33, overlooks this important mechanism.

The impacts of solar radiation on uncompensable heat stress are
especially large when realistic sweating capacity limits are included. This is
particularly true for hot-dry regions, where hot temperatures, strong solar
radiation, dry air and often high wind speeds (Supplementary Fig. 19)
induce high demand for sweat evaporation. Such evaporative demand often
exceeds the sweating capacity even for an idealized fit and acclimated per-
son. This is consistent with recent studies10,25,33,47 that found wider dis-
crepancies between the physical 35 °C TW adaptability limit and the
physiological critical TW thresholds in hot-dry conditions than in humid
conditions. Our attribution analysis (Fig. 3) shows the additional radiative
heat load under the sun or shade scenario, compared to the dark scenario,
contributes even more than sweating capacity limits to the occurrence of
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uncompensable heat stress. This further demonstrates the importance of
providing improved measures of the human heat burden caused by direct
sunlight and diffuse radiation under shading objects.

Some caveats are warranted. Model projections of near-surface
quantities are subject to considerable model uncertainty, even after bias
correction, as conducted here (Supplementary Method 3). Gmay be over-
estimated fordensely forested tropical regions, particularly theAmazon, due
to the underestimation of near-surface wind speed in South America by
most CMIP6models59. The bias appears to stem from the models’ rules for
converting land-use input data into land-cover dynamics, which tend to
overestimate both forest cover and biomass density in the Amazon60. The
problem could be further compounded by uncertainties in the input land-
use data’s representation of deforestation61, including both large-scale
clearing and fine-scale disturbances, for both current and projected sce-
narios. We partly address uncertainties in our analysis through two
approaches: first, by applying bias and variance corrections to all near-
surface climate variables (Supplementary Method 3), and second, by con-
ducting sensitivity analyses on key variables and parameters (Supplemen-
tary Method 4) and comparing scenarios of low and high radiation
exposure. Those sensitivity analyses confirm that our presented results are
rather conservative.We ignored the effect of protective clothing on outdoor
workers51. On the one hand, clothes can reduce absorbed solar radiation,
which reduces heat stress; on the other hand, clothes reduce the effective
wind speed at the skin surface and trapheat andmoisture,which increases it.
Regardless, in one set of experiments, solar radiation consistently reduced
the physical work capacity of subjects with either low or high clothing
coverage especially in hot conditions51. Future work can extend our
intermediate-complexity model to assess the additional effects of clothing
and other personal factors on the uncompensable heat stress threshold62. By
using daytime mean G our estimated impacts are more conservative than
using thedaytimemaximumGbecause simply sheltering for thehottest part
of the day will not be sufficient to avoid these effects. Our modeling results
cannot be used to infer mortality andmorbidity impacts, which often occur
well below the uncompensable limit due to various health and complicating
factors, as shown in past5,13 and recent63 heatwave-mortality records. Such
risks under compensable heat should be estimated by approaches that
incorporate physiological vulnerabilities or mortality data14,33. Despite these
limitations, the uncompensable heat stress threshold identified by our
model can serve as an important upper bound for adaptability, although
tighter than in most previous studies1,10,24,25,47. Our results help quantify the
extra sensitivity of uncompensable heat stress to warming due to the
inclusion of radiative,wind andmetabolic effects thatwill impactmillions of
people whose essential daily activities must be completed outdoors.

Methods
Any physically based study of heat stress must stipulate: (A) a detailed
scenario describing the human experiencing heat stress and their environ-
ment; (B) a physical model for calculating heat stress for that human; and
(C) forcing data for the heat stress model. These aspects are detailed in the
following subsections.

Heat stress scenario
Our model applies to the case of an idealized fit, unclothed, and fully
hydrated person, consistent with previous studies1,6,7,9,23,24. In addition, we
have included basic physiological considerations as in recent studies10,11,24,33,
while keeping the model as simple as possible. The three physiological
parameters included in our model are mean skin surface temperature,
metabolic heat generation associated with outdoor activities and sweat
capacity limits for acclimated and non-acclimated persons, respectively48.
Our model specifically quantifies the daytime mean radiative and wind
effects under three clearly defined scenarios (below), focusing on sub-
populations engaged in outdoor drinking water collection and agricultural
work (see Supplementary Method 2 “Population distribution data”). The
reason to use daytime mean values and these two subpopulations are to

ensure that uncertainties in radiation exposure associated with human
behavioral modification are strongly constrained.

We consider three radiative scenarios inwhich (1) full solar radiation is
included (sun); (2) only diffuse radiation is included (shade); (3) no solar
radiation is included (dark, Table 1). In the shade scenario, the model-
simulated diffuse radiation is used as a proxy for radiation in the shade. In
the climate models analyzed, the global land mean ratio of diffuse to full
solar radiation (Kd) concurrentwith annualmaximumGday under the shade
scenario varies from 27% to 34% (Supplementary Table 2). The ensemble
average Kd is 31% for all land grid cells and 27% for the hottest 1% of land
grid cells, which arewithin the observed range of a fraction of solar radiation
that is able to transmit through various shading objects (30-70%, mean
~50% under plastic shading nets29,30, ~45% under discontinuous canopy32,
and ~16% under dense tree canopies in the summer31). The amount of
unavoidable radiation in outdoor shade conditions depends on the actual
environment (the type of and the position under shading objects and the
albedo of surrounding surfaces). To further account for this uncertainty, we
varied the amount of radiation input under shade (Eq. 3 for shade) by±50%,
which results in the radiation input closely matching the mean fraction of
solar radiation transmitted below shading nets and below tree canopies.

The dark scenario is intended to compare with recent studies that have
similar assumptions to ours but ignore radiation10–12. We also consider two
additional scenarios in which metabolic heat and sweating limits are varied
(dark*, dark**, Table 1) to compare with other studies1,24,44. No single sce-
nariowill be sufficient to capture the full complexity of human behavior in a
catastrophic heatwave. However, since our model is physically based, it can
be readily extended to study additional scenarios.

Energy balance model of heat stress
We use an intermediate complexity energy balance model of the human
body to estimate heat stress (Eqs. (1)–(8)). Our model is simpler than full
complexity human thermophysiological models26,41–43,64,65 and the parti-
tional calorimetry model of human heat balance and survivability33,49, but
more complex than the impliedmodel in previous studies based on thewet-
bulb temperature (see Eqs. (9)–(14)). Intermediate complexity models are
widely recognized as essential for developing a fundamental understanding
of climate science66,67. In the following, we describe the basic model (Eqs.
(1)–(8)) and its derivatives (Eqs. (9)–(15)) that focus on identifying the
uncompensable heat stress limit for the above scenarios.

In our model, the outer skin surface forms the boundary of a control
volume. For this control volume, the first law of thermodynamics requires
that

G ¼ Rn � H � λE þM ð1Þ

whereG is the rate of storage of heat in the body (positive values imply a net
gain [Wm−2]), Rn is the net radiant heat exchange across the skin surface
(incomingminus outgoing radiation; Eqs. (2)–(5),H is the rate of convective
heat exchange across the skin surface (positive values imply a net loss;
Eq. (6)),λE is the rate of latent heat exchange through evaporation across the
skin surface (positive values imply a net loss (Eqs. (7) and (8)), andM is the
rate of metabolic heat production inside the body (always greater than zero
and dependent on levels of activity). Other fluxes exist3—for example, heat
conduction and respiration—but they are typically negligible compared to
the other fluxes listed here and are ignored in our model. For humans (and
endothermic animals), the energy inputs and outputs at the skin surface
typically balance to maintain a stable core temperature. Uncompensable
heat stress occurs whenG > 0, whichwill eventually increase the body’s core
temperature above dangerous levels (sooner for larger G).

In Eq. (1), the net rate of radiant heat exchange, Rn, across the skin
surface is modeled as

Rn ¼ f sðRin þ Lin � LoutÞ ð2Þ
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where ƒs is the fraction of total skin area effectively involved in radiant heat
exchange (taken as a constant 0.8 from refs. 41,42), Rin is the incident sun-
angle corrected solar radiation absorbed by the skin surface, Lin is incident
and absorbed longwave radiation, and Lout is outgoing longwave radiation
emitted by the body. Rin can be estimated for both sun and shade scenarios
as follows if all input variables are available (see Supplementary Table 2):

Rin ¼
1� αð Þ φR0

b þ 0:5 Rd þ Rg

� �h i
; for sun scenario

1� αð Þ0:5 Rd þ Rg

� �
; for shade scenario

8><
>: ð3Þ

where α is the mean body reflectance of shortwave radiation (α = 0.3 from
refs. 26,68), φ is the human body’s projected area factor for direct beam as a
function of sun zenith angle (μ) according to ref. 26, R0

b is the incoming
direct radiation received on a surface perpendicular to the beam which is
converted from the direct beam radiation (Rb) incident on a horizontal
surface by R0

b ¼ Rb
cosðμÞ, Rd is diffuse radiation, and Rg is reflected solar

radiation from the ground. The outdoor shade scenario is a special case of
Rin with R0

b equal to zero. Climate models usually provide total solar
radiation (Rs) incident on a horizontal surface (Rs = Rb+ Rd). Only six
models provideRd, for which direct beam incident on a horizontal surface is
calculated by Rb = Rs–Rd. For the other models, we use the decomposition
method from ref. 69 to estimate the diffuse fraction for each grid cell and
each time step using solar constant, μ, andRs as inputs. Sun zenith angle μ is
calculated for each grid cell and each time step following a procedure from
the Community Atmosphere Model (https://ncar.github.io/CAM/doc/
build/html/cam5_scientific_guide/). See Supplementary Method 1 for
details on sun angle correction and diffuse radiation calculation.

Absorbed incident longwave radiation (Lin) is calculated by

Lin ¼ εs0:5 Ld þ Lg
� �

ð4Þ

where Ld is the downwelling longwave flux from the atmosphere, Lg is
upwelling longwave flux from the ground, εs is the emissivity (absorptivity)
of the skin surface (εs = 0.97, refs. 42,68), and the number 0.5 is a view factor
applied to the isotropic fluxes Rd, Rg, Ld, and Lg following refs. 70,71.

Lout can be estimated by the Stefan–Boltzmann Law:

Lout ¼ εsσ Ts þ 273:15
� �4 ð5Þ

where σ is the Stefan–Boltzmann constant (5.67 × 10−8Wm−2 K−4), and Ts
is skin surface temperature in °C. In order to maintain a healthy body core
temperature of roughly 37 °C for acclimated and fit individuals72, skin
temperature is typically a little lower to maintain a positive energy gradient
between the body’s core and skin surface, allowing the body to dissipate
heat1,73. Here Ts is treated as a constant value of 36 °C in the model because
this value is often observed in people at rest in hot conditions10 and prior to
core body temperature rises74. A value of Ts = 36 °C gives a core-to-skin
temperature gradient of 1 °C which is considered the minimum gradient to
allow the body to dissipate heat in severe heat conditions4,73 and is
recommended for assessing heat stress and required sweating rates75. We
investigate the sensitivity of our results to this assumption in Supplementary
Method 4.

Sensible heat flux in and out of the body via convection depends on the
temperature difference between the skin surface (Ts) and the surrounding
air (Ta) and the skin surface convective heat transfer coefficient. Thus,H can
be expressed as

H ¼ hcðTs � TaÞ ð6Þ

where hc is the convective heat transfer coefficient [Wm−2 K−1], which is a
non-linear function of wind speed (U). We use the relation hc ¼ 14:1U0:5

for forced convection as in ref. 41.We have conducted a thorough literature

review on the convective heat transfer coefficient for the human body
(Supplementary Fig. 7) and conducted extensive sensitivity tests on our
results by varying the hc function and U (Supplementary Method 4). The
choice of the hc function from Fiala’s model41 is conservative as shown in
Supplementary Fig. 8. Furthermore, we conservatively impose a minimum
threshold on wind speed (Umin = 0.1 m s−1) when calculating hc for forced
convection, as is common in parameterizations of boundary layer
conductance and convection over land or ocean surfaces76. For wind speed
below 0.1m s−1 that may occur in indoor environments28 or in tropical
humid regions (e.g., the Amazon), we use the mean observed
hc = 3.3Wm−2 K−1 for natural convection (Supplementary Fig. 7).

The latent heat flux (λEo) from a freely evaporating skin surface is
calculated as follows:

λEo ¼
λhc
cp

qs Ts

� �� qa
� � ¼ hc

γ
½esðTsÞ � ea� ð7Þ

where λ is the latent heat of vaporization as a function of sweat temperature
on the skin surface (assumed equal to Ts), hc is defined above, cp is the
specific heat capacity of the air at constant pressure, qsðTsÞ denotes
saturation specific humidity (of sweat) evaluated at skin temperature, qa is
specific humidity of the air, esðTsÞ is saturation vapor pressure evaluated at
skin temperature, ea is air vapor pressure, and γ is the psychrometric con-
stant (γ ¼ Pcp

ελ , where P is surface air pressure and ε is the ratio of the
molecular weight of water vapor to that of dry air). In practice, skin latent
heat flux is limited by physiological constraints on sweat capacity. To
account for this, actual evaporative heat flux from sweat (λE) is limited by
the maximum sweating capacity (λEmax):

λE ¼
(
λEmax; if λEo>λEmax

λEo; if λEo ≤ λEmax

ð8Þ

where λEmax is set to 500Wm−2 (corresponding to 1.25 l of sweat pro-
ductionperhour) for acclimated adults or 400Wm−2 (1 l per hour) for non-
acclimated adults, according to the latest ISO 7933:2023 standard48. Here,
our focus is on uncompensable heat stress, so we assume a completely
saturated skin surface fully covered by sweat48. Default parameter values
used in the above equations are provided in Supplementary Table 1.

The critical threshold foruncompensableheat stress iswhenGbecomes
positive, and is the focus of our analysis. When radiation, air temperature
and relative humidity are at comfortable levels, H and λE are both positive
and more than sufficient to counterbalance Rn andM; as a result, the body
will cool (G < 0). Heat stress occurs when Ta approaches or surpasses Ts, so
that H becomes negative (implying that convective heat fluxes are working
to increase the body’s temperature rather than decrease it), and λE becomes
the primary channel to remove extra heat. If specific humidity (qa) also rises
sufficiently, λEmay be unable to provide the required cooling; in this case,
uncompensable heat stress occurs (G > 0Wm−2).

To compare our results with those of previous studies based on wet-
bulb temperature (TW), we now explain how to convert between the two
measures of heat stress (G [Wm−2] and TW [°C or K]). The wet-bulb
temperature is definedas the temperature of aparcel of air after it is cooled at
constant pressure to saturation solely by evaporationofwater into it using its
own latent energy. An implicit equation for TW is

cp Ta � TW

� � ¼ λ qs TW

� �� qa
� �

ð9Þ

Prior studies based on wet-bulb temperatures do not impose limits on
sweating from the skin surface (λE = λEo), and neglect radiative and
metabolic heat loads (Rn =M = 0). Combining these assumptions with Eqs.
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(1), (6), (7), and (9) yields:

�H � λEo ¼ �hcðTs � TWÞ � λhc
cp

½qs Ts

� �� qs TW

� �� ¼ GTW ð10Þ

where qs TW

� �
is saturation-specific humidity evaluated at TW. GTW is

referred to as the TW-equivalent energy flux (Wm−2), which is essentially
the same as Eqs. (1), (6), and (7) without radiation and metabolic terms.

Sherwood and Huber1 derived an effective energy flux F from TW,
where F ¼ k Ts � TW

� �
(Eq. S2 in their Supporting Information). This

relation is not obviously equivalent to Eq. (10); here, we reconcile this
apparent discrepancy by deriving a similar equation in the context of our
energy balancemodel. In addition to the assumptionsmade in the previous
section (Rn andM are zero), assume a moderate difference between Ts and
TW.Then qs Ts

� �
and qs TW

� �
can be linearized around themeanofTWand

Ts using the first-order Taylor approximations:

qs Ts

� � � qs
TW þ Ts

2

� 	
þ ΔðTs �

TW þ T s

2
Þ ð11Þ

qs TW

� � � qs
TW þ Ts

2

� 	
þ ΔðTW � TW þ Ts

2
Þ ð12Þ

whereΔ ¼ dqs
dT ð

TWþTs
2 Þ (i.e., the slope or first derivative of saturation-specific

humidity with respect to temperature, evaluated at T = TWþTs
2 ). Subtracting

Eq. (12) from Eq.(11) gives

qs T s

� �� qs TW

� � � Δ Ts � TW

� �
;whereΔ ¼ dqs

dT
TW þ T s

2

� 	
ð13Þ

This linearization is a reasonable approximation of qs Ts

� �� qs TW

� �
when Ts–TW is not too large (Supplementary Fig. 27). Substituting Eq. (13)
into Eq. (10) gives

�H � λEo ¼ �hcð1þ
λ

cp
ΔÞ T s � TW

� � ¼ GTW ð14Þ

If we define k ¼ �hcð1þ λ
Cp
ΔÞ, then Eq. (14) becomes

k Ts � TW

� � ¼ GTW (k is a negative value and positiveGTWmeans energy
enters the body), which has the same form as equation S2 in ref. 1. Note that

k is not constant but changes with wind speed, hc, and
TWþTs

2 (since Δ is a

function of TWþTs
2 ).

The above derivation shows thatGTW (Eq. (10) or Eq. (14)) is a special
case of our G model (Eqs. (1)–(8)) in which radiative and metabolic heat
sources are ignored (Fig. 1a), along with limits to sweat capacity (Eq. 8).
Thus, our energy balance model (Fig. 1b) generalizes previous work based
on wet-bulb temperature by relaxing those assumptions. We note that
Sherwood and Huber1 used the value Ts = 35 °C (rather than the value of
Ts = 36 °Cused in ourGmodel; seedescription of Eq. (5))whenderiving the
adaptability limit of TW= 35 °C. Equation (10) or (14) shows that when
TW= Ts = 35 °C,GTW = 0,which implies dissipation ofmetabolic heat (M is
about 59Wm−2 for a resting person) is not possible. However, according to
observations Ts routinely rises above 35 °C in hot conditions before core
temperature rises74. Using Ts = 36 °C in Eqs. (10) or (14) would give
GTW=−58Wm−2 when TW= 35 °C and U = 1m s−1, which is nearly
equivalent toG = 0calculatedbyourmodel (Eqs. 1–8) if addingunavoidable
metabolic heat (M = 59Wm−2) to GTW while assuming no solar and
longwave radiative heating as in Sherwood and Huber1. The choice of any
fixed value ofTs is an approximation to the physiological response of skin to
heat and depends on whether considering M or not. Our validation with
experimental data shows that using Ts = 36 °C in our model (Eqs. (1)–(8))
gives accurate predictions of G = 0 and core temperature inflection points
(Fig. 2), whereas using Ts = 35 °C would overestimate G (Supplementary
Method 4). Nevertheless, we use Ts = 35 °C when converting TW to GTW

(Eq. (10) or (14)) to be consistentwith Sherwood andHuber1 and to enable a
cross-comparison (Fig. 3).

Model validation and cross-comparison
We validate the above model (Eqs. (1)–(8)) using chamber experimental
data from the PSU-HEATproject25 in a similar way to validation conducted
in recent studies33,44,77. The dataset includes two sets of experiments, one on
subjects cycling an ergometer (MinAct, meanM = 83Wm−2), and another
on subjectswalking on a treadmill (LightAmb,meanM = 133Wm−2). Each
set of experiments included six trials: the first three had fixedTa of about 36,
38, and 40 °Cwhile the vapor pressure (ea) was gradually increased until the
core temperature (Tc) inflecionpointwas observed; the other threehadfixed
ea of about 2.7, 2.1, and 1.6 kPawhileTa was gradually increased until theTc
inflectionpointwasobserved.These 12 combinationsof criticalTa and ea (or
RH) and two levels ofmetabolic heat (83 and 133Wm−2) are used as inputs
to the model to predict G (G = 0 indicates Tc inflection point). The 25 sub-
jects involved in the experimentswerehealthy, young adults, consistentwith
our model assumption. Their light clothing is ignored in our model. Solar
radiation is set to zero and only longwave radiation exchange is considered
using the skin (Ts) and air (Ta) temperatures. Since the experiments were
conducted in closed environmental chamberswithout forced airmovement,
we set the convective heat transfer coefficient hc to 3.3Wm−2 K−1, repre-
senting natural convection, which is determined from a thorough literature
review (Supplementary Fig. 7). Due to the lack of forced convection, model
predicted sweat evaporation rates in all experiments are well below the
maximum sweat capacity set in Eq. (8) for both non-acclimated and
acclimated adults. The model predicted G and standard deviations for the
twelve combinations ofTa and ea are presented in Fig. 2 (see Supplementary
Fig. 9 for RH on the Y-axis), which accurately reflects the observed
Tc inflection points across the range of critical environmental conditions.

To enable cross-comparisonwith other studies, we also analyze the sky
condition (cloudy or sunny) and mean radiant temperature (Tr) when heat
stress occurs. The sky condition is measured by atmospheric clearness (Kt)
which is calculated as the ratio of downwelling shortwave radiation at the
surface (Rs) to the extra-terrestrial irradiance on a horizontal surface69,
where the latter is a function of solar constant and sun zenith angle (see
Supplementary Method 1 and Supplementary Fig. 1). Tr is converted from
the sum of sun-angle and view-angle corrected shortwave radiation and
longwave radiation absorbed by the body (Rin and Lin fromEqs. (3) and (4))
according to the following equation68:

Tr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rin þ Lin

εsσ
4

s
� 273:15 ð15Þ

In Supplementary Fig. 16, Kt, Tr and Rin are computed from 3-h data
from the ERA5 reanalysis for one example year (2009). Theirmidday values
are selected according to local sun zenith angle to compare with ref. 33.

Forcing data and data processing
We use 3-h climate data from 1980 to 2099 from twelve CMIP6 models
(Supplementary Table 2). We first regrid the nine input variables (Ta, RH,
Rs, Rd, Rg, Ld, Lg, U, P) of these models to a common 360 × 180 longitude/
latitude grid (using bilinear interpolation) and then conduct bias and var-
iance correction on these variables from twelve models with reference to 30
years of ERA5 (WFDE5 v2.1) reanalysis data over land (see Supplementary
Method 3 “Bias correction and evaluation”). We calculate G and TW using
bias-corrected three-hourly data and then calculate daytime mean values
(Gday, TW

day), where daytime is determined by solar zenith angle less than
90°. Ensemble statistics (median, and 25–75th percentiles) are derived at
each grid cell and then summarized spatially to quantify the global aggregate
impact of uncompensable heat stress on land area and population.

We use outdoor estimates of forcing variables, as we focus on specific
subpopulations engaged in key outdoor activities (water collection and
farming work, see Supplementary Method 2 “Population distribution
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data”). Although we consider different sources of radiation and conduct
incidence angle corrections to incoming solar and longwave radiation (Eqs.
(3) and (4)) as present in some full-complexity human energy balance
models, further studies arewarranted to fully understand radiative effects by
considering additional scenarios of shortwave and longwave radiation
within different surroundings (e.g., urban street canyons).

Normalizing by global warming amount
To remove the dependenceof our results on a specific climate projection, we
normalize all the results by specific global warming amounts relative to
preindustrial in a similarway to ref. 46. The normalized results represent the
sensitivity of heat stress severity and impact on global warming. For each of
the twelve CMIP6 models in our ensemble, global warming amounts since
the preindustrial are determined by (i) calculating the model-simulated
difference of 30-year running means of global (area-weighted) mean tem-
perature relative to the 1980–2009 mean and (ii) adding the observed
warming experienced in 1980–2009 relative to 1850–1900 to this amount.
The observed mean warming in 1980–2009 (0.69 °C) is calculated as the
ensemble median of HadCRUT578, BerkeleyEarth79, NOAAGlobalTemp80

global mean air temperature analysis datasets. We focus on the warming
amounts from 1 to 4 °C projected by most models within the range of our
data (fewer thanfivemodelspredictwarmingamountshigher than4.5 °Cby
2099). We use the global warming amounts to estimate the warming of
emergence (WoE) for uncompensable heat stress, defined as the lowest
warming amount needed such that Gday > 0Wm−2 occurs for at least one
dayperyear.TheWoE isdetermined for eachgrid cell byfinding thefirst 10-
year running mean Gday exceeding zero and recording the global warming
amount correspondingmost closely to the 10-year period (matchedwithin a
tolerance of ±0.05 °C) as the WoE (Fig. 4). We also present the impacts of
uncompensable heat stress associatedwith a givenwarming amount (Fig. 7)
or along a warming gradient (Figs. 3–6) using the average Gday sam-
pled for the 10-year period matching each specific warming amount
most closely (within a tolerance of ±0.05 °C) for each model to be included
in the ensemble statistics (medianand25–75thpercentiles). Todemonstrate
how uncompensable heat stress extends throughout the day with
increased warming, we also show the mean diel profiles of 3-h G using a
common set of grid cells in Fig. 7. These cells are selected based on where
Gday > 0 first appears at 1 °C of warming under the sun scenario for each
subpopulation.

Data availability
The original CMIP6climate data for the 12models81–92 used in this study are
available through the Earth System Grid Federation (ESGF) nodes (https://
esgf-node.llnl.gov/search/cmip6/)45. The HadCRUT578, BerkeleyEarth79,
andNOAAGlobalTemp80 global air temperature series can be sourced from
https://crudata.uea.ac.uk/cru/data/temperature/, https://berkeleyearth.org/
data/, https://psl.noaa.gov/data/gridded/data.noaaglobaltemp.html,
respectively. The post-processed data that support the findings of this
study are available via the Harvard Dataverse (https://doi.org/10.
7910/DVN/XFV1GE)93.

Code availability
Themodel codewasdevelopedusing theNCARCommandLanguage (NCL
version 6.6.2). Code for replicating the figures and analyses was written in
NCL (version 6.6.2) or R (version 4.3.2). Code for the model and for the
figures and analyses has been deposited in theHarvardDataverse at https://
doi.org/10.7910/DVN/XFV1GE.
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Supplementary Tables 

Supplementary Table 1: Parameters and input variables used in the human energy balance model. 

Parameters  Meaning  Default value [unit] Reference 
𝛼 Body (skin) reflectance 0.3 [-] 

1 

𝜀! Emissivity of skin surface 0.97 [-] 
2,3 

σ Stefan‐Boltzmann constant  5.67 × 10−8 [W m−2 K−4] 
4 

𝑐" Specific heat capacity of air 1.01 [J g−1 K−1] 
4,5 

𝜆 Latent heat of vaporization as a function 
of sweat or skin temperature (Ts) ≈2.418 × 103 [J g−1] 

5,6 

ε Ratio of the mean molecular weight of 
water to that of dry air 0.622 [-] 

4,7 

φ Body projected area factor for view 
angle correction of direct beam 

a function of solar zenith angle 
(μ) 

8 

ƒs Effective radiant area ratio of the skin 
surface 0.8 [-] 

2,9 

Ts Mean skin temperature 36 [°C] 10 

M Metabolic heat during complete 
rest/moderate work   

59/176 [W m−2] or 100/300 
[W] divided by standard body 
surface area 1.7 m2 

11–14 

λEmax Maximum sweating capacity for 
acclimated/non-acclimated adults 

500/400 [W m−2] or 1.25/1 
[litre h−1] 

15 

  



 
 

2 
 

Supplementary Table 2: List of CMIP6 models16–27 and the data used in this study. 

Model Ensemble  Experiment Period Grid 
Native 3-hourly 
variables 

Global mean 
diffuse fraction  

ACCESS-
CM216  r1i1p1f1 historical, 

ssp585 
1980-
2099  gn 

tas, huss, ps, rsds, 
rsdsdiff, rsus, 
rlds, rlus, uas, vas 

0.30 (provided) 

AWI-CM-1-
1-MR17  r1i1p1f1 historical, 

ssp585 
1980-
2099  gn 

tas, hurs (6-
hourly), ps, rsds, 
rsus, rlds, rlus, 
sfcWind 

0.31 (estimated) 

BCC-CSM2-
MR18  r1i1p1f1 historical, 

ssp585 
1980-
2099  gn 

tas, huss, ps, rsds, 
rsdsdiff, rsus, 
rlds, rlus, uas, vas 

0.33 (provided) 

CMCC-
CM2-SR519  r1i1p1f1 historical, 

ssp585 
1980-
2099  gn 

tas, huss, ps, rsds, 
rsdsdiff, rsus, 
rlds, rlus, 
sfcWind 

0.32 (provided) 

EC-Earth320  r1i1p1f1 historical, 
ssp585 

1980-
2099  gr 

tas, huss, ps, rsds, 
rsus, rlds, rlus, 
sfcWind 

0.32 (estimated) 

GFDL-
ESM421 r1i1p1f1 historical, 

ssp585 
1980-
2099 gr1 

tas, huss, ps, rsds, 
rsus, rlds, rlus, 
uas, vas 

0.33 (estimated) 

IITM-ESM22  r1i1p1f1 historical, 
ssp585 

1980-
2099  gn 

tas, huss, ps 
(monthly), rsds, 
rsdsdiff, rsus, 
rlds, rlus, 
sfcWind 

0.32 (provided) 

KIOST-
ESM23  r1i1p1f1 historical, 

ssp585 
1980-
2099  gr1 

tas, huss, ps, rsds, 
rsus, rlds, rlus, 
uas, vas 

0.31 (estimated) 

MIROC624  r1i1p1f1 historical, 
ssp585 

1980-
2099  gn 

tas, huss, ps, rsds, 
rsus, rlds, rlus, 
sfcWind 

0.27 (estimated) 

MIROC-
ES2L25  r1i1p1f2 historical, 

ssp585 
1980-
2099  gn 

tas, huss, ps, rsds, 
rsus, rlds, rlus, 
uas, vas 

0.28 (estimated) 

MPI-ESM1-
2-LR26  r1i1p1f1 historical, 

ssp585 
1980-
2099  gn 

tas, huss, ps, rsds, 
rsus, rlds, rlus, 
sfcWind 

0.31 (estimated) 

MRI-ESM2-
027  r1i1p1f1 historical, 

ssp585 
1980-
2099  gn 

tas, huss, ps, rsds, 
rsdsdiff, rsus, 
rlds, rlus, uas, vas 

0.34 (provided) 
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Supplementary Methods 

Supplementary Method 1: Description of input data and procedure to estimate diffuse radiation  

Supplementary Table 2 summarizes the CMIP6 models and provided variables used in this study. We 

use the CMIP6 experiments ‘historical’ for the period 1980-2014 and ‘ssp585’ for the period 2015-2099 

to calculate the global distribution and time trend of G and its statistics. Thirty years (1980-2009) of 

historical data is needed for bias correction of CMIP6 with reference to ERA5 (see Supplementary Method 

3). The original variable names correspond to the variables used in this study as follows: ‘tas’ is near-

surface air temperature (Ta), ‘huss’ is near-surface specific humidity (qa), ‘ps’ is surface pressure (P), ‘rsds’ 

is surface total downwelling solar radiation (Rs, also called global radiation), ‘rsdsdiff’ is diffuse radiation 

(Rd), ‘rsus’ is upwelling shortwave radiation reflected from the ground (Rg), ‘rlds’ is downwelling 

longwave radiation from the atmosphere (Ld), ‘rlus’ is upwelling longwave from the ground (Lg), and 

‘sfcWind’ is wind speed (U) simulated at 10 meter height. Some models do not provide ‘sfcWind’ but 

instead provide ‘uas’ for the eastward component of U and ‘vas’ for the northward component of U, which 

are converted to ‘sfcWind’. Relative humidity (RH) is calculated for each model using qa, Ta and P. While 

most models provide three-hourly data for all variables, there are a few exceptions: AWI-CM-1-1-MR and 

IITM-ESM provide 6-hourly ‘hurs’ (RH) and monthly P, respectively. In this case, we interpolate them 

bilinearly to three-hourly. All climate variables were simulated at 2-m reference height (Ta, qa or RH) or 

near the surface (P, Rs, Rd, Rg, Ld and Lg which are not distinguishable from 2-m), except for wind speeds 

(sfcWind, uas, vas) which were simulated at 10 m. We estimate 2-m wind (U) by multiplying 10-m wind 

with a logarithmic wind profile factor 0.75 (ref.7, similar to that used in Fiala et al.28). Actual wind 

experienced by a person could be lower than 2-m wind as the average height of body centre is smaller than 

2 m, but we use all climate variables at 2 m for consistency. 

Only six models originally provide ‘rsdsdiff’ (Rd) and the diffuse fraction (Kd = Rd/Rs, last column of 

Supplementary Table 2) is calculated directly for each model using the concurrent Rd and Rs values used 

to calculate Gday (daytime mean G). For the other six models the diffuse fraction and Rd are estimated using 

3-hourly Rs, solar zenith angle (μ), and solar constant as inputs based on a well-established relationship 

between Kd and the atmospheric clearness index (Kt, the ratio of Rs to the extra-terrestrial irradiance on a 

horizontal surface, the latter is a function of solar constant and μ)29. We compared three decomposition 

methods – ERBS29, BRL30,31, and ABREU32 – with radiation measurements from a flux tower during 2016-
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2021 (Supplementary Fig. 1). The three methods all use solar constant, μ, and Rs as inputs and are suitable 

for hourly or 3-hourly data. The accuracy of estimated Rd is within ±2 W m−2 in the annual average 

compared to the observed Rd at the flux tower. The ERBS method gives the mean Rd closest to the 

measurements and the second lowest root mean squared error (16.7 W m−2). Although the ABREU method 

has the lowest root mean squared error (15.8 W m−2), it tends to overestimate the daily maximum Rd and it 

requires input of climate zone if used at the global scale. Although there are other more complex methods 

developed for estimating diffuse radiation at the minute time scale33, we opt for the simpler ERBS method 

because our intention of using diffuse radiation is only to represent the scenario of relatively lower radiation 

exposure in outdoor shaded environments compared to full solar radiation under the sun, but not aimed to 

accurately reproduce the 3-hourly diffuse radiation for the CMIP6 models that do not provide this variable. 

The diffuse radiation and direct beam components are necessary for view angle correction of incoming 

solar radiation (Eq. 3). With the bias-corrected data, the mean Kd of all land grid cells concurrent with 

annual maximum Gday under the shade scenario is 0.31 (and 0.27 for the hottest 1% of land grid cells). 

 
Supplementary Fig. 1: Comparison of three decomposition methods (ERBS, BRL, ABREU) for 
estimating diffuse fraction. a Empirical relationship between the atmospheric clearness index (Kt, the 
ratio of Rs to the extra-terrestrial irradiance on a horizontal surface) and the diffuse fraction (Kd, the ratio 
of Rd to Rs). b Comparison of estimated diffuse radiation (Rd) by three methods with measured values at a 
flux tower during 2016-2021 (NEON Bartlett Experimental Forest (US-xBR), Lon -71.29°, Lat 44.06°).  

Supplementary Method 2: Population distribution data 
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We focus our analysis on populations engaged in two specific outdoor activities: water collection and 

farming. For water collection, we use a spatially-resolved dataset (0.041 degree resolution) of population 

distribution of four categories of drinking water access, including 1) piped water on or off premises, 2) 

other improved facilities (protected well/spring, rainwater, bottled water, tanker truck), 3) unimproved 

(unprotected well/spring), and 4) surface water (river, lake, canal, dam, surface water), created with data 

from more than 88 low-income and middle-income countries for the period of 2000-2017 (Deshpande et 

al. 202034, obtained from https://vizhub.healthdata.org/lbd/wash). The number of people without piped 

water access is about 2.88 billion in 2017 (including 2.13 billion in the category “other improved”, 419 

million in the category “unimproved”, 336 million in the category “surface water”). This estimate is broadly 

consistent with the latest UNICEF, WHO report35, which estimates approximately 2.2 billion people lacked 

safely managed drinking water on their premises in 2022. In this report, the definitions of unimproved and 

surface water are identical to those of the Deshpande et al. dataset, and the sum of basic services (improved 

source within 30 minutes round trip collection time) and limited services (improved source over 30 minutes 

round trip collection time) corresponds to the “other improved” category in the Deshpande et al. dataset. 

The number of people lacking safely managed drinking water on their premises is clearly decreasing over 

time due to progress in providing water services. Since Deshpande et al. is the only spatially resolved 

dataset we have found, we rescale its 2017 gridded data for each category (other improved, unimproved 

and surface water) so that their respective gross numbers match the 2022 UNICEF, WHO gross numbers 

for their corresponding categories (limited services, unimproved and surface water). The rescaled spatial 

data (Supplementary Fig. 2a) represents the subpopulations (total 703 million) who most likely spend more 

than 30 mins per day collecting water, which are the focus of our impact analysis. We apply the rescaled 

data to the whole century. Estimates of the precise number of people who must spend more than 30 mins 

per day to collect drinking water are subject to considerable uncertainty. Nevertheless, it is clear that many 

hundreds of millions of people must spend more than 30 minutes outdoors to access drinking water. 

For farming, we use the spatially-resolved global distribution of urban and rural populations from the 

Global Human Settlement Layer (GHSL) project36 (obtained from https://human-

settlement.emergency.copernicus.eu/download.php), which was produced based on the GHS-POP R2023A 

population grid37 and the GHS-SMOD R2023A settlement layers38. Among the population categories 

provided, we choose “Rural Cluster” (with 500-5000 inhabitants in the cluster and a density of > 300 

inhabitants per km2 of permanent land) and “Low Density Rural grid cells” (with a density of > 50 

inhabitants per km2 and not part of a Rural Cluster) to represent rural populations, which have a total of 
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1391 million people in 2020. According to the International Labour Organization (ILO) report39, there are 

about 850 million agricultural workers worldwide in 2018, which is about 61% of the rural population of 

the GHSL dataset, matching closely with the 61.2% of employment in global rural areas represented by 

skilled agricultural, fishery and forestry workers from the 2020 ILO report40. Thus, we rescale the 2020 

GHSL 1000-km resolution gridded dataset of rural populations by 61% so that its total population matches 

the gross number of agricultural workers from the ILO reports (850 million) but retains its spatial 

distribution (see Supplementary Fig. 2b). When estimating the impacts of uncompensable heat stress on 

these two subpopulations, we assume their most recent population data remain constant in future. Further 

studies are needed to estimate their future changes.  

 
Supplementary Fig. 2: Distribution of subpopulations engaged in outdoor water collection and 
farming. The population (number of people per km2) who spend more than 30 mins per day collecting 
water outdoors (a) and the population doing agricultural work in rural areas (b). The corresponding 
percentages of total population belonging to these subgroups are presented in (c) and (d).       

Supplementary Method 3: Bias correction and evaluation 

We use the European Centre for Medium-Range Weather Forecasts ERA5 reanalysis dataset from 

1980 to 2009 as the reference for variance and bias adjustment of the CMIP6 dataset. The reference dataset 

includes six near surface meteorological variables from the latest bias-corrected ERA5 reanalysis (WFDE5 
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v2.1, generated using the WATCH Forcing Data methodology applied to ERA5 reanalysis data): Tair, Qair, 

PSurf, Wind, SWdown, and LWdown, corresponding to tas, huss, ps, sfcWind (or uas, vas), rsds, and rlds 

in Supplementary Table 2, and three ERA5 single-level radiation fields: mean surface diffuse short-wave 

radiation flux (rsdsdiff = rsds – rsdsdir (direct shortwave)), mean surface upwelling (reflected) short-wave 

radiation flux (rsus = rsds – rsns (net shortwave)), and mean surface upwelling long-wave radiation flux 

(rlus = rlds – rlns (net longwave)). These variables are provided at 0.5° × 0.5° spatial resolution and hourly 

temporal resolution, which are re-gridded to the same 1° × 1° grid as CMIP6 using bilinear interpolation 

and resampled to 3-hourly time steps. The ERA5 and WFDE5 v2.1 are considered the best available 

observational-based reference for bias adjustment of future climate projections for climate impact studies41.  

We take the bias and variance correction procedure from ref.42 to correct the climatological mean and 

interannual variance biases in each of the above nine CMIP6 variables in the following steps:  

1) Detrend the 3-hourly ERA5 reanalysis and CMIP6 time series (CMIP6H, the superscript H denoting the 

historical 30-year period) of 1980-2009 to yield anomalies (ERA5#$%&#'(, CMIP6#$%&#'() ) and calculate 

their standard deviations, the ratio of which is the variance correction factor (fVC): 

𝑓*+ =
!,-(/012	4	/012!")

!,-(+6789!4	+6789!")	
                                               Eq. S1 

where ERA5): and CMIP6): are the historical linear trends in 1980-2009. Detrending is necessary to 

avoid the problems of overestimating the standard deviation and inappropriately modifying the long-

term trend during the variance correction of future time series.  

2) Compute CMIP6 anomalies of the future period (CMIP6F, 2010-2099) by subtracting the 30-year 

backward running trend: 

CMIP6#$%&#'(; = CMIP6; − CMIP60:                               Eq. S2 

where CMIP60:  for a given year is calculated as the linear trend of the previous 30 years. Using 

backward running trend is commonly done42 as it allows obtaining the anomalies until 2099, whereas 

using centred 30-year running trend would limit the bias correction up to the year 2076. For the 

historical period (1980-2009), the anomalies are calculated in step 1.     

3) Multiplying the historical and future anomalies (CMIP6#$%&#'() ,	 CMIP6#$%&#'(; ) by the variance 

correction factor fVC and adding back the historical and running trends yields the variance-corrected 

time series for historical and future periods: 

CMIP6<=) = 𝑓*+CMIP6#$%&#'() + CMIP6):
CMIP6<=; = 𝑓*+CMIP6#$%&#'(; + CMIP60:

                             Eq. S3 
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4) Calculate the climatological bias (bclim) between CMIP6<=)  and ERA5: 

𝑏='>& = CMIP6<=)55555555555 − ERA55555555                                                Eq. S4 

where CMIP6<=)55555555555 is the climatological mean of variance-corrected CMIP6 data in 1980-2009 at each 3-

hourly time step and ERA55555555 is the corresponding climatology of ERA5 in the same period.   

5) Finally, the bias- and variance-corrected time series is computed for the historical (CMIP6<=?=) ) and 

future (CMIP6<=?=; ) periods by subtracting bclim from the above variance-corrected data (CMIP6<=) , 

CMIP6<=; ) at each 3-hourly time step of each year: 

CMIP6<=?=) = CMIP6<=) − 𝑏='>&
CMIP6<=?=; = CMIP6<=; − 𝑏='>&

                                           Eq. S5 

The above procedure corrects for interannual variance and climatological mean bias in CMIP6 data 

with respect to ERA5 while it does not affect model simulated long-term trends from 1980 to 2099, which 

is an important feature of this trend-preserving bias correction method42,43. We use ensemble statistics to 

show the ensemble median trend and inter-model uncertainties and additionally take the normalization 

procedure (main Methods section “Normalizing by global warming amount”) to remove the dependence 

of our results on a specific climate projection.  

We apply the above variance and bias correction procedure to all CMIP6 model variables listed in 

Supplementary Table 2. Additionally, to better preserve the physical realism of relative humidity (RH), we 

calculate RH from original specific humidity, air temperature and pressure of each model and ERA5, and 

then apply this procedure to correct for the variance and mean bias in RH. We then use the bias- and 

variance-corrected 3-hourly climate variables to compute G and TW. We note that some studies44,45 directly 

applied a climatological mean bias correction to daily maximum TW, but not to the constituent climate 

variables, which misses competing effects on TW (e.g., dry bias of RH offsetting warm bias of Ta) or may 

lead to over-correction due to non-linear amplification effects between different climate variables. 

We validate the performance of the above bias and variance correction by comparing the original and 

corrected CMIP6 data with ERA5 both spatially (Supplementary Fig. 3 for the difference in Ta between 

CMIP6 models and ERA5 at each grid cell) and temporally (Supplementary Fig. 4 for global average 

annual mean of each variable, Supplementary Fig. 5 for global average daily mean and daily maximum 

values). The global mean (standard deviation) of bias in Ta during 1980-2009 is reduced from 0.7 (3.3) °C 

in the original data to 0.00007 (0.0016) °C in the bias- and variance-corrected data. 
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Supplementary Fig. 3: Thirty-year (1980-2009) mean difference in Ta between CMIP6 models (left 
column for original data, right column for bias- and variance-corrected data) and ERA5. 
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Supplementary Fig. 3: Continued for the rest of CMIP6 models listed in Supplementary Table 2. 
Bias is reduced to nearly zero for each model after bias and variance correction.       



 
 

11 
 

 
Supplementary Fig. 4: Comparison of global average annual mean CMIP6 variables before (left) 
and after (right) bias and variance correction with ERA5 (thick grey line) in the period of 1980-2099. 
This panel shows variables Ta, qa, U, and Rs (see definition in Supplementary Method 1).     
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Supplementary Fig. 4: Continued for variables Rd, Rg, Ld, and Lg (annual mean). 
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Supplementary Fig. 5: Comparison of global average daily mean values of CMIP6 variables before 
(left) and after (right) bias and variance correction with ERA5 in the year 2009 as an example. This 
panel shows the daily mean of variables Ta, qa, U, and Rs. 
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Supplementary Fig. 5: Continued for the daily mean of variables Rd, Rg, Ld, and Lg. 
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Supplementary Fig. 5: Continued for the daily maximum of variables Ta, qa, U, and Rs. 
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Supplementary Fig. 5: Continued for the daily maximum of variables Rd, Rg, Ld, and Lg. 
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Supplementary Method 4: Sensitivity analysis 

We conduct sensitivity analyses on key input variables (Rs and U) and parameters (Ts, M and hc) of the 

model (Eqs. 1-8) by varying one variable (parameter) at a time. Supplementary Fig. 6 shows the sensitivity 

of total land area projected to experience Gday > 0 to Rs, U, M, and Ts. To speed up calculations, the 

sensitivity tests use the concurrent 3-hourly values of the climate variables used to compute annual 

maximum Gday for each grid cell and each year from all twelve CMIP6 models. When testing Rs or U, its 

global mean is scaled to one value at a time along the gradient shown in the horizontalaxis of 

Supplementary Fig. 6. When testing M and Ts, constant values at fixed intervals are used. Ensemble 

statistics are shown for the global warming amount of 2 °C.  

Although Ts is treated as a constant value of 36 °C for acclimated and fit individuals in the model, we 

investigate the sensitivity of our results to this assumption by varying Ts in the range of 33 to 38 °C. 

Supplementary Fig. 6d shows that the projected impacted area of uncompensable heat stress at 2 °C of 

global warming shrinks with increasing Ts and expands with decreasing Ts. When Ts = 35 °C is used as 

input to the model, the global land area projected to experience Gday > 0 increases by about 107% (63%) 

under the shade (sun) scenario compared to the default Ts = 36 °C. Under severe heat loads, Ts is often 

observed to rise above 35 °C before core temperature rises (e.g., when 36 °C ≤ Ta ≤ 44 °C as shown in Fig. 

17B of Fiala et al.10). Our validation with the PSU-HEAT experimental data shows that using Ts = 36 °C 

accurately predicts G around zero across the range of critical environmental conditions (main Fig. 2 and 

Supplementary Fig. 9). If using Ts = 35 °C, the predicted G would be about 62 W m−2 rather than zero. 

Thus, we use Ts = 36 °C in the model, which is both more accurate and more conservative. Should we use 

an even higher value for Ts in the model? The body core temperature begins to increase above 37 °C when 

Ts exceeds 36 °C after 1-h exposure (Fig. 17B of Fiala et al.10), which is not tolerable for long. Thus, 

increasing Ts further is not warranted.  

The convective heat transfer coefficient (hc) is crucial for estimating the sensible and latent heat 

components of the model (Eqs. 6-8). We conduct a thorough literature review on the hc coefficient of both 

forced convection and natural convection for the human body (Supplementary Fig. 7). For forced 

convection, hc is normally expressed as an exponential function of wind speed (U) in the form ℎ= = 𝑏𝑈@, 

where b is typically specified in the range of 7.5 to 15 and n in the range of 0.5 to 0.6 according to 

measurements on manikins46–48. Supplementary Fig. 7 summarizes forced convection functions for hc from 

the following works: Bonan4, Bach (cited in ref.9), Fiala9, Kurazumi47,49, Ichihara (cited in ref.46), Seppänen 
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(cited in ref.46), deDear46, Fanger (cited in ref.46), Colin (cited in ref.9), Parsons14, Nishi & Gagge48,50,51, 

Mitchell (cited in ref.47,49), Kerslake52, Belding (cited in ref.53). A subset of eight studies (refs.9,14,46,48,49) 

also provide values of hc measured independently for natural convection in the absence of noticeable wind 

(point marks in bottom left corner of Supplementary Fig. 7), which gives a mean hc = 3.3 W m−2 K−1 that 

is used for natural convection in our model when U ≤ 0.1 m s−1. We perform an additional test on the 

sensitivity of our results to the choice of hc function by recalculating the results using three alternative 

functions: Bonan (same as Bach), deDear, and Nishi & Gagge (Supplementary Fig. 8). The Bonan equation 

is derived from their original expression for aerodynamic conductance 𝑔# = 1/(200(𝑑/𝑈)A.2)  (ref.4) 

according to ℎ= = 𝜌𝑐C𝑔#, where d = 0.15 (m) is the significant diameter of the entire body (ref.2), 𝜌 is air 

density and 𝑐C is defined in Supplementary Table 1. Supplementary Fig. 8 shows that using a hc function 

with a steeper slope (e.g., Fiala’s in Supplementary Fig. 7) results in lower G and smaller impacted area 

with Gday > 0, whereas a flatter hc function such as deDear’s or Nishi & Gagge increases the projected risk 

of uncompensable heat stress. Our model uses Fiala’s hc function from figure 3 in ref.9. This choice gives 

a relatively conservative projection of uncompensable heat stress impacts as shown in Supplementary Fig. 

8. Given that a large volume of thermophysiological studies we surveyed show a highly dispersed 

distribution of the hc function (in relation to U) and G is sensitive to this function (imposing a sweating 

limit in Eq. 8 of the model has substantially reduced the sensitivity in Supplementary Fig. 8), further studies 

are warranted to constrain the convective heat transfer process around the human body.   
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Supplementary Fig. 6: Sensitivity of land area projected to experience Gday > 0 at 2 °C of warming 
to key parameters or input variables in the energy balance model. a Solar radiation (Rs, here showing 
the absorbed Rs after sun angle correction); b Wind speed (U); c Metabolic heat (M); d Skin temperature 
(Ts). The bars denote ensemble averages, and the error bars indicate the 25th-75th percentile interval. Here 
the impacted land area is not masked by water collection or agricultural population data.  

  
Supplementary Fig. 7: Summary of the convective heat transfer coefficient (hc) for a human body 
as a function of air velocity from published literature. Lines indicate measured hc for forced 
convection. Point marks in the left bottom indicate hc for natural convection measured in the absence of 
noticeable wind from a subset of studies with the same point marks in the legend.  

  
Supplementary Fig. 8: Sensitivity of land area projected to experience Gday > 0 at different 
warming levels to the choice of convective heat transfer coefficient (hc) function. a Shade scenario; b 
Sun scenario. Four representative functions from Supplementary Fig. 7 are compared: Bonan (ℎD =
15.6𝑈A.2), Fiala (ℎ= = 14.1𝑈A.2) as in Eq. 6, deDear (ℎ= = 10.4𝑈A.29), and Nishi & Gagge (ℎ= =
8.6𝑈A.2EF). The bars denote ensemble median, and the error bars indicate the 25-75th percentiles. Here the 
impacted land area is not masked by water collection or agricultural population data.  
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The following are supplementary figures cited in the main text.  

Supplementary Figures 9-27 

 
 

 
Supplementary Fig. 9: Same as the main Fig. 2 but with relative humidity (RH) on the Y-axis.  
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Supplementary Fig. 10: Spatial distribution of Gday under different radiation scenarios and 
decomposition of the effects of different factors on Gday. Multi-model ensemble median of annual 
maximum Gday under the dark (a) and sun (b) scenarios, and the individual effects of solar radiation (sun 
– dark scenario, c) sweating limit (dark – dark* scenario,  d) extra metabolic heat (dark* – dark**, i.e., 176 
– 59 W m−2, e) and finite wind speed (dark** – GTWday, f) at 2 °C of global warming. Areas with daily mean 
Ta  < 20 °C are masked out in c-f to focus on warm conditions.  
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Supplementary Fig. 11: Same as main Fig. 7 but for the subpopulation engaged in farming.   
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Supplementary Fig. 12: Same as main Fig. 5 but for non-acclimated persons. Non-acclimated persons 
are modelled with a maximum sweating capacity of 400 W m−2 (corresponding to 1 litre of sweat 
production per hour), according to the ISO 7933:2023 standard15.  
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Supplementary Fig. 13: Projected occurrence frequency of uncompensable heat stress under 
different radiation and warming scenarios. Ensemble median projected annual number of days with 
Gday > 0 W m−2 under dark (a/d), shade (b/e) and sun (c/f) scenarios. Panel a-c for 2 °C warming and d-f 
for 4 °C warming relative to preindustrial level. The plots are masked by the population distribution of 
agricultural workers shown in Supplementary Fig. 2b to focus on populated regions. 
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Supplementary Fig. 14: Projected annual hours of uncompensable heat stress outdoors under 
different radiation and warming scenarios. Annual cumulative hours with G > 0 under (a/e) 1.5 °C, (b/f) 
2 °C, (c/g) 3 °C, and (d/h) 4 °C of warming for outdoor shade (a-d) and sun (e-h) scenarios. The outdoor 
scenarios consider people doing moderate work (M = 176 W m−2), with maximum sweating capacity of 
500 W m−2 and use dynamic wind speeds and other climate variables as inputs (main Table 1). This figure 
is masked by the population distribution of agricultural workers shown in Supplementary Fig. 2b to focus 
on populated regions. 
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Supplementary Fig. 15: Projected annual hours of uncompensable heat stress indoors at different 
warming levels. Annual cumulative hours with G > 0 under (a/e) 1.5 °C, (b/f) 2 °C, (c/g) 3 °C, and (d/h) 
4 °C of warming relative to preindustrial level. Panel a-d for people at rest (M = 59 W m−2) indoors with 
zero solar radiation and minimal wind speed (U = 0.1 m s−1); panel e-h for people cycling an ergometer 
with zero solar radiation but higher metabolic heat M = 83 W m−2 as in ref.54,55.  
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Supplementary Fig. 16: Distribution of midday atmospheric clearness index (Kt), mean radiant 
temperature (Tr) and absorbed incident solar radiation (Rin) by a person in warm and hot conditions 
according to 3-hourly ERA5 reanalysis data for an example year (2009). a-b Histograms of Kt in warm 
conditions with daily mean Ta > 25 °C (a) and in hot conditions represented by the top 1% of Gday (b; here 
Gday is computed without solar radiation to examine its distribution under any weather condition). c-d 
Scatterplots of the difference between Tr and Ta (c) and Rin (d) as a function of Kt in warm conditions. See 
main Methods section “Model validation and cross-comparison” for details about the calculation of Kt, Rin 
and Tr. The grey dashed lines in a-b divide sky conditions to cloudy (Kt < 0.3), partly cloudy (0.3 ≤ Kt ≤ 
0.8) and clear (Kt > 0.8) according to the observed range of Kt under three sky conditions29. The blue shaded 
region in a-d denotes the sky conditions (0.25 < Kt < 0.3) under which the mean of Tr − Ta is about 15 °C 
as shown in c, which was observed at midday under partly cloudy conditions from ref.56 that was used for 
the “sun scenario” by ref.57. The orange shaded region in a-d denotes the sky conditions (0.75 < Kt < 0.85) 
corresponding closely to the observed Tr − Ta = 30 at midday under sunny conditions from ref.56.     
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Supplementary Fig. 17: WoE under the shade scenario for each model used to compute the 
ensemble median in main Fig. 4b.  
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Supplementary Fig. 18: WoE under the sun scenario for each model used to compute the ensemble 
median in main Fig. 4c.  
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Supplementary Fig. 19: Concurrent daytime mean values of the climate variables used to calculate 
annual maximum Gday under the sun scenario at 2 °C warming. Surface air temperature (Ta; a), 
relative humidity (RH; b), full solar radiation (Rs; c), diffuse radiation (Rd; d), reflected solar radiation 
from the ground (Rg; e), atmosphere downwelling longwave radiation (Ld; f), upwelling longwave 
radiation from the ground (Lg; g), and wind speed (U; h). A reverse-search algorithm is used to find the 
concurrent values of these variables when annual maximum Gday is identified at each land grid cell. Only 
the ensemble median values are shown in the maps. 
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Supplementary Fig. 20: Same as Supplementary Fig. 19 but for the shade scenario, which uses only 
Rd, Rg, Ld, and Lg for radiation input. See main Table 1 for the definition of the shade scenario.   
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Supplementary Fig. 21: Same as Supplementary Fig. 19 but for the dark scenario, which uses only 
Ld and Lg for longwave radiation input. See main Table 1 for the definition of the dark scenario. 
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Supplementary Fig. 22: Same as Supplementary Fig. 19 but for climate variables concurrent with 
annual maximum TWday. Although only Ta (a) and RH (b) are involved in the calculation of TW, U (c) is 
used in Eq. 14 to convert TWday to GTWday. The difference between U concurrent with TWday and U 
concurrent with Gday (dark**) is shown in d. Wind speeds at the time of peak TW are mostly higher than 
those of peak G under the dark** scenario. See main Table 1 for the definition of the dark** scenario. 



 
 

34 
 

 
Supplementary Fig. 23: Same as Supplementary Fig. 19 but showing global land averages of 
daytime mean values of input variables concurrent with annual maximum Gday under the sun 
scenario. The thick grey line denotes the ensemble mean and the colour lines denote individual models. 
The black circles indicate the 2000-2014 averages of the ERA5 reanalysis data. Some spread among 
CMIP6 models and differences from ERA5 in these concurrent variables reflect the different dynamics 
and distributions in G determined by different inter-variable relationships of each model. The real inter-
model spread of each input variable in the full period has been substantially reduced after bias and 
variance correction as shown in Supplementary Figs. 3-5 (both the climatological mean and interannual 
variance have been adjusted very closely to those of ERA5). 



 
 

35 
 

 
Supplementary Fig. 24: Same as Supplementary Fig. 23 but for the shade scenario, which uses only 
Rd, Rg, Ld, and Lg for radiation input. 
  



 
 

36 
 

 
Supplementary Fig. 25: Same as Supplementary Fig. 23 but for the dark scenario, which uses only 
Ld and Lg for longwave radiation input. 
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Supplementary Fig. 26: Same as Supplementary Fig. 23 but for the average values of input climate 
variables concurrent with annual maximum TWday of all land grid cells. Although only Ta (a) and RH 
(b) are involved in the calculation of TW, U (c) is used in Eq. 14 to convert TWday to GTWday.    
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Supplementary Fig. 27: Conversion of TW to effective energy flux GTW by different functions (Eq. 
10 or Eq. 14 in Methods). Eq. 14 is a linearization of Eq. 10 based on first-order Taylor approximations. 
The tangent line (dashed) at TW = 35 °C shows the conversion rate of energy flux GTW per unit increment 
of TW around Ts. The slope 137 is the value of −𝑘 = ℎ=(1 +

G
H#
∆) when ∆ is evaluated at T = TW = Ts 

according to Eq. 14. When TW departs from Ts, the conversion rate changes and there are three ways to 
estimate ∆ for the coefficient k in Eq. 14. Evaluating ∆ at T = I$JI%

K
 yields more accurate k than 

evaluating ∆ at either T = Ts (underestimation) or T = TW (overestimation) with reference to Eq. 10. The 
ensemble mean wind speed U = 3 m s-1 of all land grid cells concurrent with TWday (Supplementary Fig. 
26c) is used to calculate hc in Eqs. 10 and 14.  
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