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Abstract There is no basic explanation for soil moisture variability in the current climate, and models
diverge on the sign of expected changes in a warming world. Here, we present a diagnostic physical theory for
soil moisture at large scales. The theory is radically simpler than published alternatives, dependent only on
precipitation and surface net radiation with no free parameters. Minor variations improve its performance. The
theory answers two basic questions: (a) Why does soil moisture exhibit a W‐shaped latitudinal profile, even
though precipitation over land does not? Poleward declines in net radiation resolve this discrepancy. (b) Why
does soil moisture decrease with warming in some regions where precipitation increases? The theory predicts
this phenomenon where fractional increases in net radiation exceed those in precipitation. Common alternative
mechanisms, which invoke changes in vapor pressure deficit or plant responses to CO2, are inessential to
explaining first‐order changes in soil moisture with warming.

Plain Language Summary Soil moisture links the land surface with the atmosphere, regulating
weather patterns, water resources, and climate variability. Improving climate predictions will require a strong
understanding of water storage on land, but we lack basic physical explanations for how land surfaces will
respond to warming. Climate models disagree as to whether soils will get drier or wetter in many places, and it is
difficult to diagnose these discrepancies because existing models are so complex. Here we propose a simple
theory for soil moisture and use it to explain dominant controls at the climate scale. We quantify changes in
terms of only precipitation and net energy at the land‐atmosphere interface, and show that these inputs alone
explain most of the variability observed in soil moisture at present.

1. Introduction
Unlike oceans, land surfaces can dry out, which limits evapotranspiration and associated fluxes of water,
energy, and carbon between the surface and atmosphere. As a result, soil moisture partially regulates tem-
perature and humidity in the lowest few meters of the atmosphere, rendering it as much a cause of atmospheric
variability as it is a consequence (McColl & Rigden, 2020; McColl, Salvucci, & Gentine, 2019; McColl &
Tang, 2024). In this sense, the climatic conditions that most humans, crops, and land ecosystems experience are
strongly constrained by soil moisture (Bomblies & Eltahir, 2009; Botter et al., 2007; Manzoni et al., 2012;
Rosenzweig et al., 2002).

Despite this, soil moisture remains one of the climate's most poorly modeled variables (Koster et al., 2009), and
there is no simple explanation for its spatial structure in current or future climates. One might naively expect soil
moisture to reflect precipitation over land, at least in the zonal mean, but their zonal mean profiles are distinctly
different. Soil moisture exhibits a W‐shaped profile with peaks in the tropics and midlatitudes and minima in the
subtropics. In contrast, precipitation over land only peaks in the tropics (Figure 1; see also Figure S1 in Supporting
Information S1). Note that precipitation over land occurs primarily in the Northern Hemisphere, which contains
over two‐thirds of Earth's landmass. Soil moisture trends are equally unresolved: existing models diverge on the
sign of expected regional changes as the climate warms, exhibiting substantial inter‐model variability (Berg
et al., 2017; Cook et al., 2020; Hsu & Dirmeyer, 2023; Lemordant et al., 2018; Lian et al., 2021; Scheff
et al., 2021; Zhao & Dai, 2015). These results are qualitatively consistent with other analyses of satellite and
reanalysis data, which show patchy changes to soil moisture over the past several decades, with drying in some
regions and moistening in others (Liu et al., 2023; Vargas Zeppetello et al., 2024). Overall, models and obser-
vations provide a murky picture of soil moisture, both in terms of its variability at present and as the climate
continues to warm.
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One method of pursuing basic understanding in other parts of climate science is to construct a hierarchy of models
of varying complexity (Bony et al., 2013; Held, 2005; Jeevanjee et al., 2017; Maher et al., 2019). Complex models
aim to provide realistic simulations of the earth system. Simple models provide understanding of it, and the
interrelationships between models of varying complexity further deepen that understanding (Held, 2005). In
particular, simple models allow for the identification of mechanisms that are most essential to reproducing a given
phenomenon. Both simple and complex models are essential to advancing the field (Byrne et al., 2024).

The existing soil moisture model hierarchy skews toward higher complexity, as is true of land climate more
generally (Byrne et al., 2024; McColl et al., 2022). Land surface models occupy the most complex end of the
spectrum (Sellers et al., 1997) and typically require dozens of poorly constrained parameters which further vary in
space and time. This leads to the problem of “equifinality,” in which many different sets of parameters may yield
strong model fit to data in the present climate, but project widely varying responses to future changes
(Beven, 2006; Fisher & Koven, 2020). Hydrologists have created simpler alternatives based on soil water bud-
gets. Fluxes of water out of the soil volume are parameterized as deterministic functions of soil moisture, with
precipitation and potential evapotranspiration (PET) treated as known (possibly stochastic) forcings (X. Feng
et al., 2012, 2015; Laio et al., 2002; Milly, 1994). These formulations are considerably simpler than those in
modern land surface models. However, since the primary focus of these studies has been on relatively small
spatial scales, they are still rather complicated. For example, the model proposed in Laio et al. (2002) requires
seven spatially varying parameters to characterize soil hydraulic properties in addition to precipitation and PET

Figure 1. Zonal mean (a) precipitation over land (mm/day) and (b) surface soil saturation (− ) in several data sets: ERA5
reanalysis (Hersbach et al., 2020), simulated results from the Coupled Model Intercomparison Project (CMIP6) (Eyring
et al., 2016; O’Neill et al., 2016), and, for soil saturation, satellite products (NNsm AMSR‐E and AMSR2 series) (Yao
et al., 2021). To compute soil saturation, volumetric water content was scaled using wilting point and field capacity quantities
from the HiHydroSoil (v2.0) database (Simons et al., 2020). These precipitation patterns are broadly consistent with prior
work (Huffman et al., 2023). Inset gray shading represents the global fraction of land area by latitude (referencing the right‐
hand y‐axis). See Figures S2 and S3 in Supporting Information S1 for precipitation and soil saturation for each individual
CMIP6 ensemble member.
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forcings. More parameters are required for model variants that include vegetation (Laio, Porporato, Fernandez‐
Illescas, & Rodriguez‐Iturbe, 2001; Laio, Porporato, Ridolfi, & Rodriguez‐Iturbe, 2001). Simpler alternatives
have been developed that apply to coarser scales relevant to climate, and thus average over much of the het-
erogeneity that adds complexity to finer‐scale models. These models include Manabe's “bucket model” (Man-
abe, 1969), which is used in some of the earliest climate simulations. While useful for many purposes, soil
moisture from this model is systematically biased low (Milly, 1992). Many other examples of this class of model
also exist (Entekhabi et al., 1992; Entekhabi & Rodriguez‐Iturbe, 1994; Koster & Mahanama, 2012; Rodriguez‐
Iturbe et al., 1991, 1999). These have typically been employed as conceptual models and are not used to char-
acterize actual observed spatial or temporal variability. They also still typically require several parameters and
differ in their representations of PET.

There are surprisingly few simple models of soil moisture that explain spatial and temporal variability in the real
world. Many studies consider simple proxies that are sometimes interpreted as correlating with soil moisture,
including, for example, the difference between precipitation and evaporation (P − E, e.g., Byrne & O’Gor-
man, 2015). However, P − E is not mechanistically related to soil moisture at equilibrium, only runoff.
Budyko (1958) used dimensional analysis to derive a semi‐empirical relation between the major hydrological
fluxes, but soil moisture is a storage, not a flux, and hydrological fluxes and storages are not necessarily even
correlated with one another in general (Salvucci, 2001). Various empirical drought indices have been developed
that are indirectly related to soil moisture, such as the Aridity Index (Budyko, 1958; Greve et al., 2019), the
Palmer Drought Severity Index (Palmer, 1965), and the Standardized Precipitation Evapotranspiration Index
(Vicente‐Serrano et al., 2010), and have been used to make arguments about how “aridity” might change in a
warming world (S. Feng & Fu, 2013; Huang et al., 2016; Sherwood & Fu, 2014). Still, none of these indices claim
to be explicit models of soil moisture; they do not even share the same units (McColl et al., 2022). In addition,
while many correlate with soil moisture in the current climate, the correlation often degrades in a warmer world
(Berg & McColl, 2021; Lemordant et al., 2018; Scheff et al., 2022; Swann et al., 2016).

There is a clear gap in the soil moisture hierarchy at the very simple end of the complexity spectrum. However, a
recent soil moisture theory (Stahl & McColl, 2022) suggests that this degree of complexity may not be essential
for understanding at least some first‐order aspects of soil moisture at larger spatial scales (greater than 10 km) and
temporal scales (longer than 1 month), relevant to climate. Like some previous models, the theory is based on an
idealized soil water budget. In contrast to previous models, it is exceptionally simple, requiring zero parameters.
Stahl andMcColl (2022) demonstrated that the theory could explain much of the observed spatial variability in the
seasonal cycle, but it remains unclear if it can reproduce spatial variability in the annual mean and in longer‐term
trends. We will show in this study that, by and large, it can. We will then use the simple theory to answer two basic
questions that currently elude explanation:

1. Why does soil moisture have a W‐shaped profile in the zonal mean? This feature cannot be explained by
rainfall patterns alone. Precipitation is much higher in the tropics compared to the midlatitudes (Figure 1a),
while soil moisture is nearly as high in the midlatitudes as it is in the tropics (Figure 1b).

2. Why does soil moisture increase with warming in some regions and decrease in others? Again, these trends
cannot be explained by changes in rainfall alone. In fact, the sign of mean projected changes in precipitation
and soil moisture disagree in many parts of the world, as we will show.

This manuscript is organized as follows. In Section 2, we summarize the theory presented in Stahl and
McColl (2022), and introduce two variants of the theory with added complexity. Using a reanalysis, climate
models, and satellite observations described in Section 3, we evaluate the theory's ability to capture spatial and
temporal variability, and the degree to which adding complexity improves the theory's performance, outlined in
Section 4.We also discuss the mechanistic drivers of soil moisture and use them to address the questions above. In
Section 5, we summarize these findings and discuss implications for future work.

2. Theory
The full derivation of the simple theory can be found in Stahl and McColl (2022), which established it in the
context of seasonal cycles in soil moisture. We will show here that it faithfully captures spatial variability in the
annual mean and longer‐term trends as well, reproducing the characteristic W‐shaped zonal mean profile of soil
moisture with minima in the subtropics. Briefly, the model stems from a vertically averaged, horizontally ho-
mogeneous control volume of soil extending from the land surface down to a depth Δz such that

Geophysical Research Letters 10.1029/2025GL115044

GALLAGHER AND MCCOLL 3 of 12

 19448007, 2025, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025G

L
115044, W

iley O
nline L

ibrary on [21/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Δz(θfc − θwp)
ds
dt
= P(t) − E(s, t) − Q(s, t)

≈ P(t) − PET(t)s(t) − P(t)s(t)
(1)

where t is time, P is precipitation at the land surface, E is evapotranspiration from the land surface,Q is the sum of
drainage (vertical transport to deeper soil layers) and runoff (horizontal transport), and s is the soil saturation
(= (θ − θwp)/ (θfc − θwp),%) (Figure 2). This is a commonly used normalization of soil moisture, where θ is the
volumetric water content (m3 m− 3) and θfc and θwp are the field capacity and wilting points, respectively, which
are dependent on soil type and effectively upper and lower bounds on soil moisture. To simplify, the theory treats
Q as equal to the product of soil saturation and precipitation such that, for constant soil moisture, higher‐intensity
precipitation will result in greater surface runoff and infiltration. It also approximates E as the product of soil
saturation and PET (m s− 1), since E is strongly determined by soil moisture in water‐limited environments.
Further, recent work (Koster & Mahanama, 2012; Maes et al., 2019; Milly & Dunne, 2016) has shown that PET
can be well estimated as PET ≈ 0.8Rn where Rn is net surface radiation (W m− 2), which implies that approxi-
mately 80% of net radiation contributes to PET. By treating PET as proportional to net radiation, the formulation
naturally incorporates land‐atmosphere feedbacks that cause a wet atmosphere (with small vapor pressure deficit)
to arise over a wet land surface (Bouchet, 1963; Brutsaert & Stricker, 1979; Kim et al., 2023; McColl & Rig-
den, 2020; McColl & Tang, 2024; Morton, 1969; Zhou & Yu, 2024). Common alternative choices for PET
include “equilibrium ET” (McColl, 2020; Raupach, 2000; Slatyer & McIlroy, 1961) and the Priestley‐Taylor
equation (Priestley & Taylor, 1972), which both include explicit temperature dependence. Neither of these
choices is appropriate here. Equilibrium ET assumes a saturated atmosphere, but at the spatial and temporal scales
considered here, the atmosphere is always subsaturated. The Priestley‐Taylor equation applies to short time scales
(hours, during the day; e.g., Bruin, 1983; Raupach, 2000), whereas our focus is on longer time scales (months),
with averaging over both day and night. In sum, these assumptions clarify how the loss terms, E(s, t) and Q(s, t),
scale with soil moisture such that soil moisture can be solved for by rearranging the water balance expression.
Note that hydrological variables can be converted from units of water to units of energy using the density of water
and latent heat of vapourization.

To estimate soil moisture near the surface, Equation 1 is evaluated for the limit Δz → 0 such that

s(t) =
P(t)

0.8Rn(t) + P(t)
(2)

provides an estimate for soil saturation within the surface layer. This equation is similar to an “alternative aridity
index” proposed previously by Scheff and Frierson (2015), but this represents the first derivation of this quantity
as an explicit model of soil saturation, and the first to formulate PET solely as a function of net radiation. The
simplicity of this theory is further justified by previous studies that investigated nonlinear variants of this simple
model (e.g., Koster &Mahanama, 2012). As we will show in Section 4.1, the simple theory is sufficient to capture

Figure 2. (a) Schematic of the conceptual model where P(t) is precipitation, E(t) is evapotranspiration, Q(t) is the sum of
runoff and drainage, and Δz is the thickness of the soil layer. Example response curves for (b)Q(t) and (c) E(t) are shown for
both the simple model case (blue line) and the modified simple model case (red line).
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the current large‐scale spatial structure of soil moisture as well as projected trends, at least to first‐order, and
goodness of fit can be improved with simple modifications.

2.1. Limitations

This theory appears to capture soil moisture trends faithfully, but it is limited in the sense that it is diagnostic, and
requires precipitation and surface net radiation as inputs. In addition, while the theory's assumptions make sense at
monthly, annual, or multi‐annual timescales, they will likely fail at daily or sub‐daily intervals. Soil moisture
exhibits considerable memory of precipitation on time scales of hours to weeks (Koster & Suarez, 2001; McColl,
Alemohammad, et al., 2017; McColl, He, et al., 2019; McColl, Wang, et al., 2017; Rahmati et al., 2024; Sen-
eviratne et al., 2006). Our simple theory does not account for this memory, and would likely be inappropriate for
understanding soil moisture variability on hourly to weekly time frames. Our focus in this study is on monthly and
longer scales, for which this limitation is unlikely to be a major problem. Similarly, we expect the theory would
perform poorly at smaller spatial scales, although we have not tested this claim. This study focuses on large spatial
scales (larger than 10 km) relevant to climate.

Our theory also does not explicitly incorporate the influence of plants. Plants can rapidly respond to a changing
environment by opening and closing their stomata, implying that they partially regulate PET. While this might
seem like an oversimplification, we will show that the theory is empirically successful despite neglecting explicit
plant physiological effects. We discuss reasons for this surprising result in Section 4.2.

3. Methods
We explore spatial variation using soil moisture from three main sources: ERA5 reanalysis produced by the
European Center for Medium‐Range Weather Forecasts (ECMWF) (Hersbach et al., 2020), simulated data from
the CoupledModel Intercomparison Project (CMIP6) (Eyring et al., 2016; O’Neill et al., 2016), and observational
soil moisture derived from satellites (NNsm AMSR‐E and AMSR2 series) (Yao et al., 2021). The NNsm data set
reproduces the Soil Moisture Active Passive (SMAP, (Entekhabi et al., 2010)) soil moisture accurately, but
extends the satellite record further back in time (from 2015 to 2002) by applying an artificial neural network to the
longer AMSR‐E/AMSR2 data set. Eight CMIP6 ensemble members were selected based on (a) their compliance
with drought analysis criteria from Cook et al. (2020) and (b) their inclusion of surface radiation diagnostics. All
data are monthly averaged and resampled to a common grid at 90 km resolution. Regions poleward of ±60° were
neglected throughout, consistent with similar previous studies (Hsu &Dirmeyer, 2023). Volumetric water content
(θ, m3 m− 3, the ratio of the volume of water to the unit volume of soil) was converted to soil saturation when
necessary using wilting point and field capacity quantities from the HiHydroSoil (v2.0) database, which we
treated as invariant to warming (Simons et al., 2020). These quantities were not available from ERA5, CMIP6, or
the satellite data sources directly, and so were not tailored to these respective data sets in the analysis.

4. Results and Discussion
In this section, we test how well the simple theory captures spatial and temporal variability of soil moisture.

4.1. Spatial Variation

Given its extreme simplicity, the theory explains spatial variability in soil moisture in the current climate
reasonably well, with a Pearson correlation coefficient exceeding 0.7 for both ERA5 and CMIP6 data sets. Figure
S4 in Supporting Information S1 shows direct soil saturation output from reanalysis, simulated, and satellite data
sources, as well as the soil saturation estimate using Equation 2 and precipitation and net radiation outputs from
the source indicated. All reanalysis and simulated data are averaged across the years 1970–2000. The theory
reproduces the W‐shape zonal‐mean profile with minima in the subtropics, which is not a feature characteristic of
precipitation: precipitation peaks at the equator but does not increase again in the midlatitudes (Figure 1; see also
Figure S1 in Supporting Information S1 for zonal median values), noting that most mid‐latitude land exists in the
Northern Hemisphere. This implies that the soil moisture theory expresses more than simply variability in mean
precipitation. Its most evident limitation is a shallow dynamic range, with underestimated soil moisture in the
wettest regions, and overestimated soil moisture in the driest regions (Figures S4a, S4c, and S4e in Supporting
Information S1 compared to Figures S4b and S4d in Supporting Information S1). The peak in the tropics is also
slightly narrow.
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We are able to mitigate these limitations by relaxing the linear assumptions made in deriving Equation 2 with
minimal additional complexity. More specifically, we modify our simple model by allowing surface fluxes to
respond nonlinearly to soil moisture, which is more realistic (Koster & Mahanama, 2012), at the cost of adding
two parameters. Well‐established soil physics dictates the relation between runoff, drainage, and soil moisture,
and qualitatively resembles a power‐law dependence where Q(t) = P(t)s(t)n (Laio, Porporato, Fernandez‐Ill-
escas, & Rodriguez‐Iturbe, 2001; Laio, Porporato, Ridolfi, & Rodriguez‐Iturbe, 2001; McColl, Wang,
et al., 2017), as shown in Figure 2b. The current simple model tends to compress the dynamic range evident in
spatial maps of soil moisture (Figures S4a, S4c, and S4e in Supporting Information S1 compared to Figures S4b
and S4d in Supporting Information S1), implying that it underestimates soil moisture in the wettest regions. This
new formulation decreases runoff everywhere (Figure 2b), increasing water retained in soils. Because wet regions
were previously too dry, this amendment generally improves estimates in wet regions. It is also understood that
evaporation becomes relatively insensitive to soil moisture after transitioning from a water‐limited to energy‐
limited regime (Budyko, 1974; Koster & Suarez, 1999; Laio, Porporato, Fernandez‐Illescas, & Rodriguez‐
Iturbe, 2001; Laio, Porporato, Ridolfi, & Rodriguez‐Iturbe, 2001; McColl, Wang, et al., 2017). We can define that
point s∗ such that E(t) = (PET ⋅ s(t))/ s∗ if 0≤ s(t)< s∗ and E(t) = PET if s∗ ≤ s(t)≤ 1, as shown in Figure 2c.
This new approximation increases evaporation everywhere, rendering dry areas even drier. As previously
described, the current simple model has a dampened dynamic range such that it overestimates soil moisture in dry
regions; because this new change introduces a drying tendency, it predominantly improves the model in dry areas.
In summary, the new balance states:

Δz(θfc − θwp)
ds
dt
=
⎧⎨

⎩

P(t) − P(t)(s(t))n − PET(t)
s(t)
s∗ , 0 ≤ s(t) < s∗

P(t) − P(t)(s(t))n − PET(t), s∗ ≤ s(t)≤ 1
(3)

Both new parameters, n and s∗, were optimized at each point in space using both reanalysis and CMIP6 data under
the constraints 0< s∗ < 1 and 0< n< 100. As a result, each point in space is associated with one value of n and s∗,
which are calibrated to the time series at that point using a nonlinear least‐squares fit. Figure 3 shows two variants
on the simple model that incorporate this additional information: an intermediate model that applies a common,
constant s∗ and n at all points and a best fit model that applies the optimized s∗ and n specific to each point. The
common, constant s∗ and n for the intermediate model is equal to the median of the optimized set for all points,
which, for ERA5, yields s∗ = 1 and n = 5 (Note that, while the median s∗ = 1, many grid boxes have optimal s∗

values below 1, such that the mean of optimal s∗ = 0.78.) There is a clear trajectory from the simple model, which
captures the broad spatial structure (Pearson correlation coefficient of 0.71), to the intermediate model, which
corrects the dynamic range (Pearson correlation coefficient of 0.82), to the best fit model, which reproduces the

Figure 3. Variations on the simple theory generated using ERA5 data from 1970 to 2000. The mean soil saturation is shown in
panel (a); the simple model is shown in panel (b); the intermediate model (e.g., globally constant parameter values) is shown
in panel (c); and the maximally tuned model is shown in panel (d).
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granularity of the original data set with excellent agreement (Pearson correlation coefficient of 0.96; see also
Figures S5–S7 in Supporting Information S1).

We also tested the sensitivity of the theory to other modifications. Our theory follows Milly and Dunne (2016) by
assuming that PET corresponds to 80% of surface Rn. We varied this partitioning from 60% to 100% and found
that the original formulation is well‐justified (Figure S8 in Supporting Information S1). A PET to Rn ratio of 80%
provides a strong fit with other soil saturation estimates, especially in areas north of 10°N which contain a large
fraction of land surface area.

It is remarkable that such simple models explain observed soil moisture spatial variability so well. The most
complicated model used here (the “best fit” model, Figure 3d) requires two spatially varying parameters; in
comparison, recall that the model proposed in Laio et al. (2002), which is substantially simpler than a land surface
model, requires at least seven spatially varying parameters, and more for vegetated sites. Despite its evident
limitations, the simplest model (Figure 3b) is able to reproduce the large‐scale spatial structure reasonably well,
without requiring any parameters. Our intent in comparing these three models is not to identify the single most
accurate model, but to create a taxonomy of models of varying complexity. This illuminates which aspects of the
model are most important for reproducing observed spatial variability of annual mean soil moisture.

4.1.1. Explaining the W‐Shaped Soil Moisture Profile

Our model provides a simple explanation for the W‐shaped soil moisture profile evident in the current climate
(Figure 1b). Its equatorial peak largely reflects tropical rainfall (Figure 1a), where the ascending branch of the
Hadley cell promotes high precipitation relative to net radiation. Beyond the tropics, though, soil moisture
variability does not resemble that of precipitation: soil moisture increases moving from the subtropics to the
midlatitudes, while precipitation rates are relatively invariant. This discrepancy arises because net surface ra-
diation decreases moving toward the poles. Following Equation 2, approximately latitudinally uniform precip-
itation coupled with declining net radiation implies wetter soils, which explains why soil moisture increases into
the midlatitudes while precipitation does not. These arguments are similar, in a sense, to prior explanations for
why higher latitude land is relatively highly vegetated, like the tropics (e.g., Budyko, 1974; Transeau, 1905).
However, none of these studies make quantitative claims about soil moisture.

4.2. Temporal Trends

To investigate how the model performs in time, differentiating Equation 2 reveals that the simplest version of the
theory predicts changes in soil saturation should follow

δs
s
= (1 − s)(

δP
P
−
δRn
Rn
) (4)

In other words, fractional changes in soil saturation are proportional to the difference between fractional changes
in precipitation and net radiation, scaled by 1 − s (Figure S9 in Supporting Information S1). Notably, if fractional
changes in precipitation and net radiation are of a similar magnitude, however large, then the model predicts
negligible fractional changes in soil saturation.

We use CMIP6 outputs to explore longer term temporal trends both in time (δt) and with warming (δT). We
compare a historical reference period (1970–2000) to two future Shared Socioeconomic Pathway scenarios
(SSP2‐4.5, middle‐of‐the‐road emissions, and SSP5‐8.5, worst‐case emissions, over the years 2070–2100), and
find that the simple theory broadly reflects the actual fractional s changes projected in the CMIP6 ensemble
(Figure 4; see Figure S10 in Supporting Information S1 for the SSP5‐8.5 scenario and Figure S11 in Supporting
Information S1 for absolute changes). That said, notable differences remain: the simple model underestimates the
magnitude of the trends (Figure 4b), consistent with its tendency to underestimate the dynamic range in spatial
variability noted in the previous section. As before, adding more complexity to the simple model largely fixes this
problem (Figures 4c and 4d), although there are some regions where even the best fit model still fails to capture
the correct direction of trends. For example, over the next century, all three models indicate that eastern Russia
gets wetter and Australia gets drier, while the directly simulated trends suggest the opposite (Figure 4a compared
to Figures 4b–4d). The model also underestimates absolute changes, even with the best fit variation, although
these estimates improve with model complexity (Figure S11 in Supporting Information S1). Despite these
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shortcomings, even the simplest model predicts trends far more similar to simulated trends than precipitation
(Figure S9a in Supporting Information S1) or net radiation (Figure S9b in Supporting Information S1) alone,
which implies that changes in soil moisture are poorly explained by either quantity in isolation.

It is very surprising that such a simple model is capable of approximating trends in soil moisture with warming.
For context, much of the relevant literature focuses on two quantities entirely neglected by our simple model:
vapor pressure deficit (VPD) and atmospheric carbon dioxide (CO2) concentrations. Both quantities are projected
to rise continuously without reductions in greenhouse gas emissions. Increased CO2 concentrations reduce
transpiration in individual plants (Field et al., 1995), which leaves more water in the ground and results in higher
soil moisture, all else being equal. It also drives plant growth, which has the opposite effect (Mankin et al., 2019).
Increased VPD is often interpreted as an increase in atmospheric water demand, resulting in drier soils (e.g., Li
et al., 2023), although some argue that plants respond to increases in VPD by closing their stomata and reducing
transpiration (e.g., Novick et al., 2016), which would counteract the expected drying.

Given our model does not explicitly include any of these mechanisms, how does it work so well? As discussed
earlier, variability in PET is largely explained by variability in net radiation, rather than VPD or CO2. Why not
VPD? PET is the evaporation rate of a hypothetically saturated land surface, for which land‐atmosphere feed-
backs should be expected to cause a moist atmosphere with low VPD (Bouchet, 1963; Brutsaert & Stricker, 1979;
Kim et al., 2023; McColl & Rigden, 2020; McColl & Tang, 2024; Morton, 1969; Zhou &Yu, 2024), regardless of
the actual VPD over the actual non‐saturated land surface. For example, the actual VPD in the Sahara desert is
high; but if the Sahara were hypothetically flooded, the VPD would drop substantially, as confirmed by high
values of near‐surface relative humidity in slab‐ocean aquaplanet experiments (see, e.g., Figure 6 of Frierson
et al. (2006), Figure 1 of O’Gorman and Schneider (2008), or Figure 9 of O’Gorman et al. (2011); and further
discussion inMcColl and Tang (2024)). Studies that do not account for these feedbacks will overstate the effect of
VPD on PET (Berg & McColl, 2021; Kim et al., 2023; Milly & Dunne, 2016; Roderick et al., 2015; Zhou &
Yu, 2024).

What about plant responses to increasing CO2? Prior studies that emphasize these responses typically over-
estimate PET by disregarding land‐atmosphere feedbacks (Kim et al., 2023; Zhou & Yu, 2024). Plant stomatal
responses to CO2 result in lower estimates of PET and partially mitigate the original overestimate (Greve
et al., 2019; Yang et al., 2019). But plant stomatal responses are much less significant if PET is correctly estimated
in the first place. To further demonstrate this point, we explored plant effects on changes in soil moisture in an
ensemble of models from the Coupled Climate‐Carbon Cycle Model Intercomparison Project (C4MIP). In these
climate model experiments, CO2 increases only affect either biogeochemical model components (BGC experi-
ment), including plants, or radiation model components (RAD experiment) (Figures S12 and S13 in Supporting

Figure 4. Directly simulated trends in soil saturation compared with theory using CMIP6 data for SSP2‐4.5. Specifically,
directly simulated δs/sδT (a) is compared to the simple model (b), the intermediate model (e.g., globally constant parameter
values) (c), and the maximally tuned model (d) following Figure 3. Trends are shown between a reference period (1970–2000)
and projections for the following century (2070–2100). Gray regions in panel (a) indicate areas with no soil moisture s. The
simple model and its variants reproduce fractional changes in s that cannot be explained by P or Rn alone.
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Information S1). Most variability in ds/s is explained by the radiation‐only experiments that entirely neglect plant
physiological responses to CO2, which further justifies neglecting plant responses in the simple model (Figure
S13). The strongest trends observed in ds/s for the BGC experiments concentrate in the Sahara, but these signals
are magnified by the fact that there is very little soil moisture to begin with. Qualitatively similar results have been
found in prior analyses of soil moisture in climate models (Lemordant et al., 2018).

4.2.1. Explaining Regional Changes in Soil Moisture With Warming

Similar to the W‐shaped profile, trends in soil moisture with warming also depend upon precipitation and net
radiation and the interplay between their fractional changes. Soil moisture is projected to exhibit heterogeneous
changes over the next century, with some regions getting wetter and others drier (Figure 4a). Conversely, net
radiation is projected to increase everywhere (Figure S9b in Supporting Information S1), while precipitation often
increases in areas where soil moisture decreases (Figure S9a in Supporting Information S1) according to both the
directly simulated soil moisture (Figure 4a) and the theory (Figures 4b–4d). The simple model provides one
explanation for why this is the case: as the climate warms, soil moisture does not increase as much as precipitation
because net radiation tends to also increase with warming. Even if the magnitude of changes to precipitation and
net radiation are both strongly positive, that does not imply large changes in soil moisture, due to cancellation in
Equation 4. Indeed, if the fractional increase in net radiation exceeds the fractional increase in precipitation, the
theory suggests that soil moisture will decrease. In contrast to prior explanations, our theory requires neither
changes in VPD nor plant physiological responses to increasing CO2.

5. Conclusions
We have presented a simple physical theory for soil moisture at large scales relevant to climate. The theory
explains much of the spatial and temporal variability of soil moisture in satellite, reanalysis, and climate model‐
simulated surface soil saturation, and precipitation and surface net radiation are shown to be the dominant
controls. Our theory is radically simpler than prior work, requiring no free parameters in its simplest form. Minor
variations improve the performance of the simple theory, indicating a path forward for a soil moisture model
hierarchy.

The theory provides answers to two fundamental open questions about soil moisture, posed in the introduction
and addressed in Sections 4.1.1 and 4.2.1. Future work is needed to better understand regional changes in pre-
cipitation and surface net radiation over land. Robust constraints on global mean precipitation imply increases of
2%–3% per degree of warming (Allen & Ingram, 2002; Jeevanjee & Romps, 2018; Mitchell et al., 1987).
However, regional changes are poorly constrained and may differ considerably from this scaling, especially over
land (Allan et al., 2020; Samset et al., 2018). Even less is known about changes in surface net radiation. Robust
physical theory is needed to address these knowledge gaps.

Data Availability Statement
We use soil moisture data from three main sources, all of which are freely accessible.

• ERA5 reanalysis produced by the European Center for Medium‐Range Weather Forecasts (ECMWF)
(Hersbach et al., 2020) is available through the Copernicus Climate Data Store (https://doi.org/10.24381/cds.
adbb2d47)

• Simulated data from the Coupled Model Intercomparison Project (CMIP6) (Eyring et al., 2016; O’Neill
et al., 2016) is available through the Earth System Grid Federation system (http://esgf‐node.llnl.gov/search/
cmip6)

• Observational soil moisture derived from satellites (NNsm AMSR‐E and AMSR2 series) (Yao et al., 2021) is
available through the National Tibetan Plateau/Third Pole Environment Data Center (https://doi.org/10.
11888/Soil.tpdc.270960).

As noted in Section 3, the eight CMIP6 ensemble members were selected using the models that both met the
criteria for drought analysis in Cook et al. (2020) (https://doi.org/10.1029/2019EF001461) and included surface
radiation diagnostics. All data are monthly averaged and resampled to a common grid at 90 km resolution.
Volumetric water content was converted to soil saturation when necessary using wilting point and field capacity
quantities from the HiHydroSoil (v2.0) database available through FutureWater (https://www.futurewater.eu/
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hihydrosoil), which we treated as invariant to warming (Simons et al., 2020). In addition, the regions poleward of
±60° were neglected throughout, consistent with similar previous studies (i.e., Hsu and Dirmeyer (2023), https://
doi.org/10.1038/s41467‐023‐36794‐5).

References
Allan, R. P., Barlow, M., Byrne, M. P., Cherchi, A., Douville, H., Fowler, H. J., et al. (2020). Advances in understanding large‐scale responses of
the water cycle to climate change. Annals of the New York Academy of Sciences, 1472(1), 49–75. https://doi.org/10.1111/nyas.14337

Allen, M. R., & Ingram, W. J. (2002). Constraints on future changes in climate and the hydrologic cycle. Nature, 419(6903), 224–232. https://doi.
org/10.1038/nature01092

Berg, A., & McColl, K. A. (2021). No projected global drylands expansion under greenhouse warming. Nature Climate Change, 11(4), 331–337.
https://doi.org/10.1038/s41558‐021‐01007‐8

Berg, A., Sheffield, J., & Milly, P. C. (2017). Divergent surface and total soil moisture projections under global warming. Geophysical Research
Letters, 44(1), 236–244. https://doi.org/10.1002/2016gl071921

Beven, K. (2006). A manifesto for the equifinality thesis. Journal of Hydrology, 320(1–2), 18–36. https://doi.org/10.1016/j.jhydrol.2005.07.007
Bomblies, A., & Eltahir, E. A. (2009). Assessment of the impact of climate shifts on malaria transmission in the Sahel. EcoHealth, 6(3), 426–437.
https://doi.org/10.1007/s10393‐010‐0274‐5

Bony, S., Stevens, B., Held, I. H., Mitchell, J. F., Dufresne, J.‐L., Emanuel, K. A., et al. (2013). Carbon dioxide and climate: Perspectives on a
scientific assessment.Climate science for serving society: Research, modeling and prediction priorities, 391–413. https://doi.org/10.1007/978‐
94‐007‐6692‐1_14

Botter, G., Peratoner, F., Porporato, A., Rodriguez‐Iturbe, I., & Rinaldo, A. (2007). Signatures of large‐scale soil moisture dynamics on
streamflow statistics across us climate regimes. Water Resources Research, 43(11), W11413. https://doi.org/10.1029/2007wr006162

Bouchet, R. (1963). Evapotranspiration reelle, evapotranspiration potentielle, et production agricole. Annales Agronomiques, 14, 743–824.
Bruin, H. A. R. D. (1983). A model for the Priestley‐Taylor parameter. Journal of Applied Meteorology and Climatology, 22(4), 572–578. https://
doi.org/10.1175/1520‐0450(1983)022<0572:amftpt>2.0.co;2

Brutsaert, W., & Stricker, H. (1979). An advection‐aridity approach to estimate actual regional evapotranspiration. Water Resources Research,
15(2), 443–450. https://doi.org/10.1029/WR015i002p00443

Budyko. (1958). The heat balance of the earth’s surface, US Dept. of Commerce. Weather Bureau.
Budyko. (1974). Climate and life. Academic Press.
Byrne, M. P., Hegerl, G. C., Scheff, J., Adam, O., Berg, A., Biasutti, M., et al. (2024). Theory and the future of land‐climate science. Nature
Geoscience, 17(11), 1–8. https://doi.org/10.1038/s41561‐024‐01553‐8

Byrne, M. P., & O’Gorman, P. A. (2015). The response of precipitation minus evapotranspiration to climate warming: Why the “wet‐get‐wetter,
dry‐get‐drier” scaling does not hold over land. Journal of Climate, 28(20), 8078–8092. https://doi.org/10.1175/jcli‐d‐15‐0369.1

Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., & Anchukaitis, K. J. (2020). Twenty‐first century drought projections in the
CMIP6 forcing scenarios. Earth's Future, 8(6), e2019EF001461. https://doi.org/10.1029/2019ef001461

Entekhabi, D., Njoku, E. G., O’neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., et al. (2010). The soil moisture active passive (SMAP)
mission. Proceedings of the IEEE, 98(5), 704–716. https://doi.org/10.1109/jproc.2010.2043918

Entekhabi, D., & Rodriguez‐Iturbe, I. (1994). Analytical framework for the characterization of the space‐time variability of soil moisture. Ad-
vances in Water Resources, 17(1–2), 35–45. https://doi.org/10.1016/0309‐1708(94)90022‐1

Entekhabi, D., Rodriguez‐Iturbe, I., & Bras, R. L. (1992). Variability in large‐scale water balance with land surface‐atmosphere interaction.
Journal of Climate, 5(8), 798–813. https://doi.org/10.1175/1520‐0442(1992)005<0798:vilswb>2.0.co;2

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Inter-
comparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.
org/10.5194/gmd‐9‐1937‐2016

Feng, S., & Fu, Q. (2013). Expansion of global drylands under a warming climate. Atmospheric Chemistry and Physics, 13(19), 10081–10094.
https://doi.org/10.5194/acp‐13‐10081‐2013

Feng, X., Porporato, A., & Rodriguez‐Iturbe, I. (2015). Stochastic soil water balance under seasonal climates. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 471(2174), 20140623. https://doi.org/10.1098/rspa.2014.0623

Feng, X., Vico, G., & Porporato, A. (2012). On the effects of seasonality on soil water balance and plant growth.Water Resources Research, 48(5),
W05543. https://doi.org/10.1029/2011wr011263

Field, C. B., Jackson, R. B., &Mooney, H. A. (1995). Stomatal responses to increased CO2: Implications from the plant to the global scale. Plant,
Cell and Environment, 18(10), 1214–1225. https://doi.org/10.1111/j.1365‐3040.1995.tb00630.x

Fisher, R. A., & Koven, C. D. (2020). Perspectives on the future of land surface models and the challenges of representing complex terrestrial
systems. Journal of Advances in Modeling Earth Systems, 12(4), e2018MS001453. https://doi.org/10.1029/2018ms001453

Frierson, D. M.W., Held, I. M., & Zurita‐Gotor, P. (2006). A gray‐radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. Journal
of the Atmospheric Sciences, 63(10), 2548–2566. https://doi.org/10.1175/JAS3753.1

Greve, P., Roderick, M., Ukkola, A., & Wada, Y. (2019). The aridity index under global warming. Environmental Research Letters, 14(12),
124006. https://doi.org/10.1088/1748‐9326/ab5046

Held, I. M. (2005). The gap between simulation and understanding in climate modeling. Bulletin of the American Meteorological Society, 86(11),
1609–1614. https://doi.org/10.1175/bams‐86‐11‐1609

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal
of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

Hsu, H., & Dirmeyer, P. A. (2023). Uncertainty in projected critical soil moisture values in CMIP6 affects the interpretation of a more moisture‐
limited world. Earth's Future, 11(6), e2023EF003511. https://doi.org/10.1029/2023ef003511

Huang, J., Yu, H., Guan, X., Wang, G., & Guo, R. (2016). Accelerated dryland expansion under climate change. Nature Climate Change, 6(2),
166–171. https://doi.org/10.1038/nclimate2837

Huffman, G. J., Adler, R. F., Behrangi, A., Bolvin, D. T., Nelkin, E. J., Gu, G., & Ehsani, M. R. (2023). The new version 3.2 Global Precipitation
Climatology Project (GPCP) monthly and daily precipitation products. Journal of Climate, 36(21), 7635–7655. https://doi.org/10.1175/jcli‐d‐
23‐0123.1

Acknowledgments
KAM acknowledges funding from a Sloan
Research Fellowship (FG‐2023‐19963).
We thank two anonymous reviewers for
constructive reviews. We also
acknowledge the World Climate Research
Programme, which, through its Working
Group on Coupled Modeling, coordinated
and promoted CMIP6. We thank the
climate modeling groups for producing and
making available their model output, the
Earth System Grid Federation (ESGF) for
archiving the data and providing access,
and the multiple funding agencies who
support CMIP6 and ESGF.

Geophysical Research Letters 10.1029/2025GL115044

GALLAGHER AND MCCOLL 10 of 12

 19448007, 2025, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025G

L
115044, W

iley O
nline L

ibrary on [21/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.futurewater.eu/hihydrosoil
https://doi.org/10.1038/s41467-023-36794-5
https://doi.org/10.1038/s41467-023-36794-5
https://doi.org/10.1111/nyas.14337
https://doi.org/10.1038/nature01092
https://doi.org/10.1038/nature01092
https://doi.org/10.1038/s41558-021-01007-8
https://doi.org/10.1002/2016gl071921
https://doi.org/10.1016/j.jhydrol.2005.07.007
https://doi.org/10.1007/s10393-010-0274-5
https://doi.org/10.1007/978-94-007-6692-1_14
https://doi.org/10.1007/978-94-007-6692-1_14
https://doi.org/10.1029/2007wr006162
https://doi.org/10.1175/1520-0450(1983)022%3C0572:amftpt%3E2.0.co;2
https://doi.org/10.1175/1520-0450(1983)022%3C0572:amftpt%3E2.0.co;2
https://doi.org/10.1029/WR015i002p00443
https://doi.org/10.1038/s41561-024-01553-8
https://doi.org/10.1175/jcli-d-15-0369.1
https://doi.org/10.1029/2019ef001461
https://doi.org/10.1109/jproc.2010.2043918
https://doi.org/10.1016/0309-1708(94)90022-1
https://doi.org/10.1175/1520-0442(1992)005%3C0798:vilswb%3E2.0.co;2
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/acp-13-10081-2013
https://doi.org/10.1098/rspa.2014.0623
https://doi.org/10.1029/2011wr011263
https://doi.org/10.1111/j.1365-3040.1995.tb00630.x
https://doi.org/10.1029/2018ms001453
https://doi.org/10.1175/JAS3753.1
https://doi.org/10.1088/1748-9326/ab5046
https://doi.org/10.1175/bams-86-11-1609
https://doi.org/10.1002/qj.3803
https://doi.org/10.1029/2023ef003511
https://doi.org/10.1038/nclimate2837
https://doi.org/10.1175/jcli-d-23-0123.1
https://doi.org/10.1175/jcli-d-23-0123.1


Jeevanjee, N., Hassanzadeh, P., Hill, S., & Sheshadri, A. (2017). A perspective on climate model hierarchies. Journal of Advances in Modeling
Earth Systems, 9(4), 1760–1771. https://doi.org/10.1002/2017ms001038

Jeevanjee, N., & Romps, D. M. (2018). Mean precipitation change from a deepening troposphere. Proceedings of the National Academy of
Sciences, 115(45), 11465–11470. https://doi.org/10.1073/pnas.1720683115

Kim, Y., Garcia, M., & Johnson, M. S. (2023). Land‐atmosphere coupling constrains increases to potential evaporation in a warming climate:
Implications at local and global scales. Earth's Future, 11(2), e2022EF002886. https://doi.org/10.1029/2022EF002886

Koster, R. D., Guo, Z., Yang, R., Dirmeyer, P. A., Mitchell, K., & Puma, M. J. (2009). On the nature of soil moisture in land surface models.
Journal of Climate, 22(16), 4322–4335. https://doi.org/10.1175/2009jcli2832.1

Koster, R. D., & Mahanama, S. P. (2012). Land surface controls on hydroclimatic means and variability. Journal of Hydrometeorology, 13(5),
1604–1620. https://doi.org/10.1175/jhm‐d‐12‐050.1

Koster, R. D., & Suarez, M. J. (1999). A simple framework for examining the interannual variability of land surface moisture fluxes. Journal of
Climate, 12(7), 1911–1917. https://doi.org/10.1175/1520‐0442(1999)012<1911:asffet>2.0.co;2

Koster, R. D., & Suarez, M. J. (2001). Soil moisture memory in climate models. Journal of Hydrometeorology, 2(6), 558–570. https://doi.org/10.
1175/1525‐7541(2001)002<0558:smmicm>2.0.co;2

Laio, F., Porporato, A., Fernandez‐Illescas, C. P., & Rodriguez‐Iturbe, I. (2001a). Plants in water‐controlled ecosystems: Active role in hydrologic
processes and response to water stress: IV. Discussion of real cases. Advances in Water Resources, 24(7), 745–762. https://doi.org/10.1016/
S0309‐1708(01)00007‐0

Laio, F., Porporato, A., Ridolfi, L., & Rodriguez‐Iturbe, I. (2001b). Plants in water‐controlled ecosystems: Active role in hydrologic processes and
response to water stress: Ii. Probabilistic soil moisture dynamics. Advances in Water Resources, 24(7), 707–723. https://doi.org/10.1016/s0309‐
1708(01)00005‐7

Laio, F., Porporato, A., Ridolfi, L., & Rodriguez‐Iturbe, I. (2002). On the seasonal dynamics of mean soil moisture. Journal of Geophysical
Research, 107(D15). https://doi.org/10.1029/2001jd001252

Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I., & Scheff, J. (2018). Critical impact of vegetation physiology on the continental hydrologic
cycle in response to increasing CO2. Proceedings of the National Academy of Sciences, 115(16), 4093–4098. https://doi.org/10.1073/pnas.
1720712115

Li, S., Wang, G., Chai, Y., Miao, L., Fiifi Tawia Hagan, D., Sun, S., et al. (2023). Increasing vapor pressure deficit accelerates land drying. Journal
of Hydrology, 625, 130062. https://doi.org/10.1016/j.jhydrol.2023.130062

Lian, X., Piao, S., Chen, A., Huntingford, C., Fu, B., Li, L. Z., et al. (2021). Multifaceted characteristics of dryland aridity changes in a warming
world. Nature Reviews Earth & Environment, 2(4), 232–250. https://doi.org/10.1038/s43017‐021‐00144‐0

Liu, Y., Yang, Y., & Song, J. (2023). Variations in global soil moisture during the past decades: Climate or human causes? Water Resources
Research, 59(7), e2023WR034915. https://doi.org/10.1029/2023wr034915

Maes, W. H., Gentine, P., Verhoest, N. E., & Miralles, D. G. (2019). Potential evaporation at eddy‐covariance sites across the globe. Hydrology
and Earth System Sciences, 23(2), 925–948. https://doi.org/10.5194/hess‐23‐925‐2019

Maher, P., Gerber, E. P., Medeiros, B., Merlis, T. M., Sherwood, S., Sheshadri, A., et al. (2019). Model hierarchies for understanding atmospheric
circulation. Reviews of Geophysics, 57(2), 250–280. https://doi.org/10.1029/2018rg000607

Manabe, S. (1969). Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the earth’s surface. Monthly Weather
Review, 97(11), 739–774. https://doi.org/10.1175/1520‐0493(1969)097<0739:catoc>2.3.co;2

Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I., & Williams, A. P. (2019). Mid‐latitude freshwater availability reduced by projected
vegetation responses to climate change. Nature Geoscience, 12(12), 983–988. https://doi.org/10.1038/s41561‐019‐0480‐x

Manzoni, S., Schimel, J. P., & Porporato, A. (2012). Responses of soil microbial communities to water stress: Results from a meta‐analysis.
Ecology, 93(4), 930–938. https://doi.org/10.1890/11‐0026.1

McColl, K. A. (2020). Practical and theoretical benefits of an alternative to the Penman‐Monteith evapotranspiration equation.Water Resources
Research, 56(6), e2020WR027106. https://doi.org/10.1029/2020WR027106

McColl, K. A., Alemohammad, S. H., Akbar, R., Konings, A. G., Yueh, S., & Entekhabi, D. (2017a). The global distribution and dynamics of
surface soil moisture. Nature Geoscience, 10(2), 100–104. https://doi.org/10.1038/ngeo2868

McColl, K. A., He, Q., Lu, H., & Entekhabi, D. (2019a). Short‐term and long‐term surface soil moisture memory time scales are spatially
anticorrelated at global scales. Journal of Hydrometeorology, 20(6), 1165–1182. https://doi.org/10.1175/jhm‐d‐18‐0141.1

McColl, K. A., & Rigden, A. J. (2020). Emergent simplicity of continental evapotranspiration. Geophysical Research Letters, 47(6),
e2020GL087101. https://doi.org/10.1029/2020gl087101

McColl, K. A., Roderick, M. L., Berg, A., & Scheff, J. (2022). The terrestrial water cycle in a warming world.Nature Climate Change, 12(7), 604–
606. https://doi.org/10.1038/s41558‐022‐01412‐7

McColl, K. A., Salvucci, G. D., & Gentine, P. (2019b). Surface flux equilibrium theory explains an empirical estimate of water‐limited daily
evapotranspiration. Journal of Advances in Modeling Earth Systems, 11(7), 2036–2049. https://doi.org/10.1029/2019MS001685

McColl, K. A., & Tang, L. I. (2024). An analytic theory of near‐surface relative humidity over land. Journal of Climate, 37(4), 1213–1230. https://
doi.org/10.1175/jcli‐d‐23‐0342.1

McColl, K. A., Wang, W., Peng, B., Akbar, R., Short Gianotti, D. J., Lu, H., et al. (2017b). Global characterization of surface soil moisture
drydowns. Geophysical Research Letters, 44(8), 3682–3690. https://doi.org/10.1002/2017gl072819

Milly, P. (1992). Potential evaporation and soil moisture in general circulation models. Journal of Climate, 5(3), 209–226. https://doi.org/10.1175/
1520‐0442(1992)005〈0209:PEASMI〉2.0.CO;2

Milly, P. (1994). Climate, soil water storage, and the average annual water balance.Water Resources Research, 30(7), 2143–2156. https://doi.org/
10.1029/94wr00586

Milly, P., & Dunne, K. A. (2016). Potential evapotranspiration and continental drying.Nature Climate Change, 6(10), 946–949. https://doi.org/10.
1038/nclimate3046

Mitchell, J. F. B., Wilson, C. A., & Cunnington, W. M. (1987). On CO2 climate sensitivity and model dependence of results.Quarterly Journal of
the Royal Meteorological Society, 113(475), 293–322. https://doi.org/10.1002/qj.49711347517

Morton, F. I. (1969). Potential evaporation as a manifestation of regional evaporation. Water Resources Research, 5(6), 1244–1255. https://doi.
org/10.1029/WR005i006p01244

Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., et al. (2016). The increasing importance of atmospheric
demand for ecosystem water and carbon fluxes. Nature Climate Change, 6(11), 1023–1027. https://doi.org/10.1038/nclimate3114

O’Gorman, P. A., Lamquin, N., Schneider, T., & Singh, M. S. (2011). The relative humidity in an isentropic advection–condensation model:
Limited poleward influence and properties of subtropical minima. Journal of the Atmospheric Sciences, 68(12), 3079–3093. https://doi.org/10.
1175/JAS‐D‐11‐067.1

Geophysical Research Letters 10.1029/2025GL115044

GALLAGHER AND MCCOLL 11 of 12

 19448007, 2025, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025G

L
115044, W

iley O
nline L

ibrary on [21/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/2017ms001038
https://doi.org/10.1073/pnas.1720683115
https://doi.org/10.1029/2022EF002886
https://doi.org/10.1175/2009jcli2832.1
https://doi.org/10.1175/jhm-d-12-050.1
https://doi.org/10.1175/1520-0442(1999)012%3C1911:asffet%3E2.0.co;2
https://doi.org/10.1175/1525-7541(2001)002%3C0558:smmicm%3E2.0.co;2
https://doi.org/10.1175/1525-7541(2001)002%3C0558:smmicm%3E2.0.co;2
https://doi.org/10.1016/S0309-1708(01)00007-0
https://doi.org/10.1016/S0309-1708(01)00007-0
https://doi.org/10.1016/s0309-1708(01)00005-7
https://doi.org/10.1016/s0309-1708(01)00005-7
https://doi.org/10.1029/2001jd001252
https://doi.org/10.1073/pnas.1720712115
https://doi.org/10.1073/pnas.1720712115
https://doi.org/10.1016/j.jhydrol.2023.130062
https://doi.org/10.1038/s43017-021-00144-0
https://doi.org/10.1029/2023wr034915
https://doi.org/10.5194/hess-23-925-2019
https://doi.org/10.1029/2018rg000607
https://doi.org/10.1175/1520-0493(1969)097%3C0739:catoc%3E2.3.co;2
https://doi.org/10.1038/s41561-019-0480-x
https://doi.org/10.1890/11-0026.1
https://doi.org/10.1029/2020WR027106
https://doi.org/10.1038/ngeo2868
https://doi.org/10.1175/jhm-d-18-0141.1
https://doi.org/10.1029/2020gl087101
https://doi.org/10.1038/s41558-022-01412-7
https://doi.org/10.1029/2019MS001685
https://doi.org/10.1175/jcli-d-23-0342.1
https://doi.org/10.1175/jcli-d-23-0342.1
https://doi.org/10.1002/2017gl072819
https://doi.org/10.1175/1520-0442(1992)005%E2%8C%A90209:PEASMI%E2%8C%AA2.0.CO;2
https://doi.org/10.1175/1520-0442(1992)005%E2%8C%A90209:PEASMI%E2%8C%AA2.0.CO;2
https://doi.org/10.1029/94wr00586
https://doi.org/10.1029/94wr00586
https://doi.org/10.1038/nclimate3046
https://doi.org/10.1038/nclimate3046
https://doi.org/10.1002/qj.49711347517
https://doi.org/10.1029/WR005i006p01244
https://doi.org/10.1029/WR005i006p01244
https://doi.org/10.1038/nclimate3114
https://doi.org/10.1175/JAS-D-11-067.1
https://doi.org/10.1175/JAS-D-11-067.1


O’Gorman, P. A., & Schneider, T. (2008). The hydrological cycle over a wide range of climates simulated with an idealized GCM. Journal of
Climate, 21(15), 3815–3832. https://doi.org/10.1175/2007JCLI2065.1

O’Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., et al. (2016). The Scenario Model Intercomparison Project
(ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461–3482. https://doi.org/10.5194/gmd‐9‐3461‐2016

Palmer, W. (1965). Meteorological drought. US Weather Bureau Research Paper, 45, 58.
Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large‐scale parameters.Monthly Weather
Review, 100(2), 81–92. https://doi.org/10.1175/1520‐0493(1972)100〈0081:OTAOSH〉2.3.CO;2

Rahmati, M., Amelung, W., Brogi, C., Dari, J., Flammini, A., Bogena, H., et al. (2024). Soil moisture memory: State‐of‐the‐art and the way
forward. Reviews of Geophysics, 62(2), e2023RG000828. https://doi.org/10.1029/2023rg000828

Raupach, M. R. (2000). Equilibrium evaporation and the convective boundary layer. Boundary‐Layer Meteorology, 96(1–2), 107–142. https://doi.
org/10.1023/A:1002675729075

Roderick, M. L., Greve, P., & Farquhar, G. D. (2015). On the assessment of aridity with changes in atmospheric CO2.Water Resources Research,
51(7), 5450–5463. https://doi.org/10.1002/2015wr017031

Rodriguez‐Iturbe, I., Entekhabi, D., & Bras, R. L. (1991). Nonlinear dynamics of soil moisture at climate scales: 1. Stochastic analysis. Water
Resources Research, 27(8), 1899–1906. https://doi.org/10.1029/91wr01035

Rodriguez‐Iturbe, I., Porporato, A., Ridolfi, L., Isham, V., & Coxi, D. (1999). Probabilistic modelling of water balance at a point: The role of
climate, soil and vegetation. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
455(1990), 3789–3805. https://doi.org/10.1098/rspa.1999.0477

Rosenzweig, C., Tubiello, F. N., Goldberg, R., Mills, E., & Bloomfield, J. (2002). Increased crop damage in the US from excess precipitation
under climate change. Global Environmental Change, 12(3), 197–202. https://doi.org/10.1016/s0959‐3780(02)00008‐0

Salvucci, G. D. (2001). Estimating the moisture dependence of root zone water loss using conditionally averaged precipitation.Water Resources
Research, 37(5), 1357–1365. https://doi.org/10.1029/2000wr900336

Samset, B. H., Myhre, G., Forster, P. M., Hodnebrog, O., Andrews, T., Boucher, O., et al. (2018). Weak hydrological sensitivity to temperature
change over land, independent of climate forcing. npj Climate and Atmospheric Science, 1(1), 1–8. https://doi.org/10.1038/s41612‐017‐0005‐5

Scheff, J., Coats, S., & Laguë, M. M. (2022). Why do the global warming responses of land‐surface models and climatic dryness metrics disagree?
Earth's Future, 10(8), e2022EF002814. https://doi.org/10.1029/2022ef002814

Scheff, J., & Frierson, D. M. (2015). Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. Journal of Climate,
28(14), 5583–5600. https://doi.org/10.1175/jcli‐d‐14‐00480.1

Scheff, J., Mankin, J. S., Coats, S., & Liu, H. (2021). CO2‐plant effects do not account for the gap between dryness indices and projected dryness
impacts in CMIP6 or CMIP5. Environmental Research Letters, 16(3), 034018. https://doi.org/10.1088/1748‐9326/abd8fd

Sellers, P. J., Dickinson, R., Randall, D., Betts, A. K., Hall, F. G., Berry, J. A., et al. (1997). Modeling the exchanges of energy, water, and carbon
between continents and the atmosphere. Science, 275(5299), 502–509. https://doi.org/10.1126/science.275.5299.502

Seneviratne, S. I., Koster, R. D., Guo, Z., Dirmeyer, P. A., Kowalczyk, E., Lawrence, D., et al. (2006). Soil moisture memory in AGCM sim-
ulations: Analysis of global land–atmosphere coupling experiment (glace) data. Journal of Hydrometeorology, 7(5), 1090–1112. https://doi.
org/10.1175/jhm533.1

Sherwood, S., & Fu, Q. (2014). A drier future? Science, 343(6172), 737–739. https://doi.org/10.1126/science.1247620
Simons, G., Koster, R., & Droogers, P. (2020). HiHydroSoil v2.0 ‐ High resolution soil maps of global hydraulic properties. Retrieved from
https://www.futurewater.nl/wpcontent/uploads/2020/10/HiHydroSoil‐v2.0‐High‐Resolution‐Soil‐Maps‐of‐Global‐Hydraulic‐Properties.pdf

Slatyer, R., & McIlroy, I. (1961). Practical microclimatology: With special reference to the water factor in soil‐plant‐atmosphere relationships.
(Tech. Rep.). Commonwealth Scientific and Industrial Research Organisation.

Stahl, M. O., & McColl, K. A. (2022). The seasonal cycle of surface soil moisture. Journal of Climate, 35(15), 4997–5012. https://doi.org/10.
1175/jcli‐d‐21‐0780.1

Swann, A. L., Hoffman, F. M., Koven, C. D., & Randerson, J. T. (2016). Plant responses to increasing CO2 reduce estimates of climate impacts on
drought severity. Proceedings of the National Academy of Sciences, 113(36), 10019–10024. https://doi.org/10.1073/pnas.1604581113

Transeau, E. N. (1905). Forest centers of eastern America. The American Naturalist, 39(468), 875–889. https://doi.org/10.1086/278586
Vargas Zeppetello, L. R., Trevino, A. M., & Huybers, P. (2024). Disentangling contributions to past and future trends in US surface soil moisture.
Nature Water, 2(2), 1–12. https://doi.org/10.1038/s44221‐024‐00193‐x

Vicente‐Serrano, S. M., Beguería, S., & López‐Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The Standardized
Precipitation Evapotranspiration Index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009jcli2909.1

Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R., & Donohue, R. J. (2019). Hydrologic implications of vegetation response to elevated CO2
in climate projections. Nature Climate Change, 9(1), 44–48. https://doi.org/10.1038/s41558‐018‐0361‐0

Yao, P., Lu, H., Shi, J., Zhao, T., Yang, K., Cosh, M. H., et al. (2021). A long term global daily soil moisture dataset derived from AMSR‐E and
AMSR2 (2002–2019). Scientific Data, 8(1), 143. https://doi.org/10.1038/s41597‐021‐00925‐8

Zhao, T., & Dai, A. (2015). The magnitude and causes of global drought changes in the twenty‐first century under a low–moderate emissions
scenario. Journal of Climate, 28(11), 4490–4512. https://doi.org/10.1175/jcli‐d‐14‐00363.1

Zhou, S., & Yu, B. (2024). Physical basis of the potential evapotranspiration and its estimation over land. Journal of Hydrology, 641, 131825.
https://doi.org/10.1016/j.jhydrol.2024.131825

Geophysical Research Letters 10.1029/2025GL115044

GALLAGHER AND MCCOLL 12 of 12

 19448007, 2025, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025G

L
115044, W

iley O
nline L

ibrary on [21/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1175/2007JCLI2065.1
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.1175/1520-0493(1972)100%E2%8C%A90081:OTAOSH%E2%8C%AA2.3.CO;2
https://doi.org/10.1029/2023rg000828
https://doi.org/10.1023/A:1002675729075
https://doi.org/10.1023/A:1002675729075
https://doi.org/10.1002/2015wr017031
https://doi.org/10.1029/91wr01035
https://doi.org/10.1098/rspa.1999.0477
https://doi.org/10.1016/s0959-3780(02)00008-0
https://doi.org/10.1029/2000wr900336
https://doi.org/10.1038/s41612-017-0005-5
https://doi.org/10.1029/2022ef002814
https://doi.org/10.1175/jcli-d-14-00480.1
https://doi.org/10.1088/1748-9326/abd8fd
https://doi.org/10.1126/science.275.5299.502
https://doi.org/10.1175/jhm533.1
https://doi.org/10.1175/jhm533.1
https://doi.org/10.1126/science.1247620
https://www.futurewater.nl/wpcontent/uploads/2020/10/HiHydroSoil-v2.0-High-Resolution-Soil-Maps-of-Global-Hydraulic-Properties.pdf
https://doi.org/10.1175/jcli-d-21-0780.1
https://doi.org/10.1175/jcli-d-21-0780.1
https://doi.org/10.1073/pnas.1604581113
https://doi.org/10.1086/278586
https://doi.org/10.1038/s44221-024-00193-x
https://doi.org/10.1175/2009jcli2909.1
https://doi.org/10.1038/s41558-018-0361-0
https://doi.org/10.1038/s41597-021-00925-8
https://doi.org/10.1175/jcli-d-14-00363.1
https://doi.org/10.1016/j.jhydrol.2024.131825


GEOPHYSICAL RESEARCH LETTERS

Supporting Information for “Climate-scale variability

in soil moisture explained by a simple theory”

Tara Gallagher1and Kaighin McColl1,2

1School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

2Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Contents of this file

1. Figures S1 to S13

Introduction The figures below contain variations on figures from the main text (Fig-

ures S1, S4-S7, S9-S11), in addition to model spread between CMIP6 ensemble members

(Figures S2 and S3), sensitivity tests of the simple theory (Figure S8), and results from

C4MIP experiments (Figures S12 and S13).

March 3, 2025, 5:36pm



X - 2 GALLAGHER AND MCCOLL: CLIMATE-SCALE SOIL MOISTURE

Figure S1. Same as Figure 1 in the main text but showing median rather than mean values.
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Figure S2. Mean precipitation (1970-2000) for individual CMIP6 models in the model ensem-

ble.
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Figure S3. Mean soil saturation (1970-2000) for individual CMIP6 models in the model

ensemble, converted to saturation from volumetric water content using field capacity and wilting

point estimations from the HiHydroSoil v2.0 database.
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Figure S4. Mean soil saturation from ERA5 reanalysis, CMIP6 ensemble, and satellite

data with zonal means (left column). For ERA5 and CMIP6 data, soil saturation estimates are

generated with the simple model using P (t) and Rn(t) from the same dataset and timeframe for

comparison (right column). P (t) and Rn(t) outputs were not available in the satellite dataset,

so the simple model cannot be compared in that case. The Pearson correlation coefficient is 0.71

comparing (a) to (b) and 0.78 comparing (c) to (d).
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Figure S5. Similar to Figure 3 in the main text but showing the difference between modeled

and directly simulated soil saturation in ERA5.

Figure S6. Equivalent to Figure 3 in the main text but referencing the CMIP6 SSP2-4.5 and

SSP5-8.5 experiments (2070-2100).
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Figure S7. Similar to Figure S6 but showing the difference between modeled and directly

simulated soil saturation in the CMIP6 ensemble.
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Figure S8. Sensitivity of the simple model to varying the PET formulation, in which PET

= 0.6Rn, PET = 0.8Rn and PET = Rn. Results are shown both in the zonal mean (left) and

as a temporal mean for each individual combination. The combination applied in the main text

is PET = 0.8Rn (blue line in the zonal mean). Inset gray shading in the zonal mean panel

represents the global fraction of land area by latitude (referencing the right-hand y-axis).
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Figure S9. Fractional changes in soil saturation per degree of warming predicted by the simple

model (equation 5 in the main text) using CMIP6 outputs for SSP2-4.5. Fractional changes are

shown between a reference period (1970-2000) and projections for the following century (2070-

2100) for both P (a) and Rn (b) with respect to temperature, scaled by 1 − s. The rightmost

plot shows the expected trend in s given those results (c) where, following equation 5, plot (a)

minus plot (b) equals plot (c).

Figure S10. Similar to Figure 4 in the main text but showing results for the SSP5-8.5 scenario

in CMIP6.
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Figure S11. Similar to Figure 4 in the main text and Figure S10 but showing absolute changes

rather than fractional changes (i.e. δs/δT rather than δs/sδT ).
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Figure S12. Soil saturation in C4MIP experiments averaged over the first thirty years.

Directly simulated and simple model results are shown for the radiation-only experiment (a,b),

biogeochemical-only experiment (c,d), and fully coupled experiment (e,f).
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Figure S13. Fractional changes in C4MIP experiments similar to Figure 6 in the main text.

Trends are shown between a reference period (years 1-30) and projections for the following century

(years 101-131). Directly simulated and simple model results are shown for the radiation-only

experiment (a,b), biogeochemical-only experiment (c,d), and fully coupled experiment (e,f).
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